УДК 661.635.68:579.222

https://doi.org/10.15407/kataliz2019.28.061

Вирощування монокристалів подвійного поліфосфату NaMn(PO₃)₃ та його структура

Р.В. Лаврик¹, В.В. Трачевський², В.А. Діамант³

¹Національний університет біоресурсів і природокористування України, Україна, 03041 Київ, вул. Героїв Оборони, 17, e-mail: ruslan_lav@ukr.net; ²Інститут металофізики ім. Г.В. Курдюмова НАН України, Україна, 03142 Київ, бул. Академіка Вернадського, 36; ³Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, Україна, 03142 Київ, просп. Палладіна, 32/34

Підібрані оптимальні умови для вирощування монокристалів сполуки NaMn(PO₃)₃. Проведено повне рентгеноструктурне дослідження синтезованого поліфосфату NaMn(PO₃)₃. Структура сполуки відноситься до орторомбічній сингонії, просторова група P2₁2₁2₁, і має параметри кристалічної решітки: а = 14,446(2), b = 14,463(2), c = 14,522(3) Å, V = 3034 Å³, Z = 16, $\rho_{вираx} = 2,757$ г/см³. Встановлені особливості будови синтезованого фосфату. Сполука досліджена методами рентгеноструктурного аналізу, диференційного термічного аналізу, ІЧ-спектроскопії, проведено її повний хімічний аналіз.

Ключові слова: подвійні фосфати, ІЧ-спектроскопія, РСА, вирощування монокристалів, кристалізація з розплаву

Bcmyn

За останній час проведено багато різнобічних досліджень з синтезу і властивостей фосфатів [1-3]. Фосфатні сполуки лужних та полівалентних металів можуть мати цінні електрофізичні характеристики, особливо ті з них, що мають в своєму структурному каркасі атоми фосфора, з'єднані через вершини октаедра полівалентного елемента [4]. Це ряд фосфатних сполук, що мають структуру дуже відомого нелінійно-оптичного кристалу КТР [5] та подвійні фосфати різних типів – $M^{I}M^{II}(PO_{3})_{3}$, $M^{I}M^{II}PO_{4}$, $M^{I}_{2}M^{II}P_{2}O_{7}$, $M^{I}_{2}M^{II}(PO_{3})_{4}$ ta M^IMn₆(P₃O₁₀)(P₂O₇)₂ [6]. Дослідження властивостей фосфатних сполук, синтез нових матеріалів на їх основі завжди становить інтерес вчених [7–9]. Фосфатні сполуки мангану мають фізико-хімічні властивості, завдячуючи яким вони виступають в ролі каталізаторів органічного синтезу. Часто вони використовуються як сировина для виготовлення каталітичної композиції для процесів гідро обробки вуглеводневої сировини. Каталітичні властивості деяких складних подвійних нових фосфатів наведені у роботі [10].

Відомий і найбільш попшрений спосіб отримання подвійних фосфатів лужних та 3d-металів є метод синтезу сполук з розплавів фосфатних та фторидфосфатних систем лужних металів, шляхом спонтанної кристалізації при повільному охолодженні [11, 12]. Відомо, що розплави типу $M_2O-P_2O_5-Me_xO_y$, де M – одновалентний метал (Li, Na, K), Me –двох- чи трьохвалентний метал, є не тільки універсальними розчинниками оксидів полівалентних металів, але й виступають реакційним середовищем для синтезу різних подвійних фосфатів. Такий метод синтезу має деякі суттєві переваги в порівнянні з іншими (ПФК, твердофазний синтез [12, 13]), і при програмованому охолодженні дає змогу отримувати речовини у вигляді якісних і високочистих кристалів, з високими виходами продуктів взаємодії. Це відображається на фізико-хімічних характеристиках синтезованих речовин та перспективах створення матеріалів на їх основі.

Мета роботи – встановити оптимальні умови синтезу подвійного поліфосфату NaMn(PO₃)₃ та дослідити його фізико-хімічні характеристики.

Експериментальна частина

Взаємодію та розчинність оксиду мангану (III) в системі Na₂O–P₂O₅–Mn₂O₃ вивчали у діапазоні температур 650–900 С. Мольні співвідношення Na₂O : P₂O₅ змінювали в інтервалі від 0,5 до 1,5. Концентрацію Mn₂O₃ у вихідних розплавах досліджуваної системі змінювали в інтервалі 5,0–27,0 % мас.

Вихідні суміші системи Na₂O–P₂O₅–Mn₂O₃ готували, використовуючи безводні реагенти NaPO₃, Na₄P₂O₇ та NH₄H₂PO₄ або (NH₄)₂HPO₄, змішуючи їх в розрахованих кількостях, з наступним обезводненням та сплавленням за температур 750–800° С. У розплави з різним співвідношенням Na₂O : P₂O₅ вносили Mn₂O₃ і сплавляли їх при підвищеній температурі в платинових тиглях до гомогенного стану протягом 2–4 год при періодичному перемішуванні. Гомогенні розплави витримували при відповідних температурах протягом 6– 7 год до встановлення рівноваги між рідкою та кристалічною фазами.

Фазові рівноваги досліджувались візуально-полі-

Рис. 1. Ізотерми розчинності Mn_2O_3 в системі $Na_2O_-P_2O_5$ - Mn_2O_3

термічним методом. Рівноважні рідкі фази відділяли від кристалічних шляхом зливання, а рештки розплаву відмивали розбавленими розчинами мінеральних кислот. Тверді кристалічні фази ідентифікували з використанням кількісного хімічного та фізико-хімічних методів аналізу. У злитих рівноважних рідких фазах визначали вміст оксиду мангану (III).

Вміст Mn_2O_3 в рівноважних рідких фазах системи $Na_2O-P_2O_5-Mn_2O_3$ при різних мольних співвідношеннях Na_2O : P_2O_5 за температур 650, 800 та 900 С наведений на рис. 1. На кривих розчинності оксиду мангану (III) спостерігається декілька чітко виражених екстремумів, які свідчать про складну хімічну взаємодію в системі. Максимальна розчинність Mn_2O_3 в системі $Na_2O-P_2O_5-Mn_2O_3$ становить 26,0 % мас. для розплаву з мольним співвідношенням Na_2O : P_2O_5 рівним 1,20. При мольних співвідношеннях Na_2O : P_2O_5 від 0,5 до 0,83 (заштрихована частина) утворюється подвійний триметафосфат Na $Mn(PO_3)_3$. Підібрано оптимальні умови для вирощування його монокристалів.

Розплави масою 8 г, з мольним співвідношенням $Na_2O: P_2O_5$ рівним 0,5, насичували оксидом мангану (III) (1,5 г) при температурі 900° С та гомогенізували 3–4 год. При поступовому пониженні температури з 900 до 700° С за 24 год з розплавів відкристалізовували монокристали NaMn(PO₃)₃, відмивали їх від залишків розтопу розчином розбавленої соляної кислоти та промивали водою, висушували при кімнатній температурі. Отримували біло-рожеві кристали розмірами від 0,5 до 2 мм, які не розчинялися в HCl та HNO₃.

Кристалічну будову нового подвійного фосфату NaMn(PO₃)₃ було встановлено методом рентгеноструктурного аналізу. Рентгеноструктурне дослідження білих кристалів ромбічного габітусу розмірами 0,1×0,019×0,2 мм проведено на дифрактометрі "Siemens P3/PC" в молібденовому випромінюванні з графітовим монохроматором.

В результаті рентгеноструктурного дослідження одержано 3018 рефлексів, з яких 2113 рефлекси з $F > 4\delta$ (F). Інтегральні інтенсивності вимірювали 20:0 методом в інтервалі кутів 4,88 ° $\leq 2\theta \leq 50,14$ ° при

Таблиця 1. Дані хімічного аналізу синтезованого подвійного поліфосфату NaMn(PO₃)₃ (% мас.)

Формула	Na ₂ O		MnO		P ₂ O ₅	
сполуки	розр.	одерж.	розр.	одерж.	розр.	одерж.
NaMn(PO ₃) ₃	9,84	9,91	22,54	22,57	67,62	67,52

швидкості сканування 2–28 град/хв. Остаточне значення фактору розбіжності становить $R_w = 0,0547$. Параметри кристалічної решітки уточнені по 36 рефлексах у діапазоні кутів $16,0^\circ \le \theta \le 32,0^\circ$.

Результати та їх обговорення

Порівнюючи вміст Mn_2O_3 у рівноважних рідких фазах досліджуваної системи за температур 650, 800 та 900 °C, слід відзначити збільшення розчинності оксиду мангану (III) в області більших мольних співвідношень $Na_2O : P_2O_5$ (1,0–1,2).

Згідно даних хімічного аналізу твердих фаз, які утворюються при кристалізації гомогенних розплавів з різними співвідношеннями Na₂O: P₂O₅, вперше виділено такі сполуки: подвійний триметафосфат NaMn(PO₃)3 кристалізується в досить широкому інтервалі мольних співвідношень Na₂O: P₂O₅, від 0,5 до 0,83 (рис. 1, заштрихована частина); фосфат NaMn₆(P₃O₁₀)(P₂O₇)₂, який утворюється при мольному співвідношенні Na₂O: P₂O₅ 0,66 у вигляді голчастих кристалів світлокоричневого кольору. В розплавах Na₂O-P₂O₅-Mn₂O₃ у досить вузьких межах мольних співвідношень $Na_2O: P_2O_5 - 0,71-0,76$ в тверду фазу кристалізується олігофосфат мангану (III) – Мп4(P2O7)3; в інтервалі від 0,66 до 0,71 утворюються голчасті монокристали фосфату мангану Mn₂P₂O₇, в частині системи з Na₂O:P₂O₅>1,0 утворюються монокристали Na₂MnP₂O₇, з параметрами решітки відмінними від данних [14]. Подвійний фосфат NaMn₃(PO₄)₂(P₂O₇) виділено в діапазоні мольних співвідношень Na₂O:P₂O₅ 0,76-0,91.

Склад синтезованої сполуки NaMn(PO₃)₃ підтверджено повним хімічним аналізом (табл. 1).

В табл. 2 наведено дані ІЧ-спектроскопії подвійного тетраметафосфату NaMn(PO₃)₃. ІЧ-спектри NaMn(PO₃)₃ вивчались на приладах UR-20 та UR-10 (Carl Zeiss) в таблетках з KBr. Характеристичні смуги коливань τ (PO₃) – 450–500 см⁻¹; δ_{s} , δ_{as} (P–O) + ν (MO) – 540–590 см⁻¹; ν_{s} (P–O–P) – 720, 800 см⁻¹ та ν_{as} (P–O–P) – 920 см⁻¹ відповідають типовим для поліфосфатів типу M¹M^{II}(PO₃)₃ та M¹₂M^{II}(PO₃)₄ [5–9]. Присутні характеристичні коливання ν_{s} P–O–P в області 700–800 см⁻¹ свідчать про наявність поліфосфатних ланцюжків з тетраедрів [PO₄] в структурі подвійного фосфату NaMn(PO₃)₃.

Термічні дослідження проводили на деріватографі Q-1500 (Угорщина). Зразок нагрівали в інтервалі 20– 900 °С в динамічному режимі підвищення температури з використанням платинових циліндричних тиглів (на-

Віднесення	Формула сполуки					
частот	NaMn ₃ (PO ₄) ₂ P ₂ O ₇	$Mn_4(P_2O_7)_3$	NaMn ₆ P ₇ O ₂₄	NaMn(PO ₃) ₃		
τ (PO ₃)	490 пл.	435 сл.	420 пл.	455 cp.		
колив. гратки			430 сл.	470 cp.		
_			490 пл.	480 cp.		
				490 cp.		
δ _s P–O	515 c.	530 пл.	520 пл.	540 пл.		
$\delta_{as}+\nu MO$		550 c.	535 сл.	550 сл.		
		570 пл.	555 пл.	560 cp.		
		585 c.	570 сл.	585 cp.		
			605 сл.			
$v_s P - O - P$	740 сл.	700 сл.	700 c.	700 сл.		
		740 сл.	715 сл.	720 cp.		
		750 сл.		730 сл.		
		790 сл.		745 cp.		
				770 cp.		
				800 c.		
vas P-O-P				930 c.		
				973 cp.		
$\nu_s PO_4$	910 пл.	980 c.	950 c.			
vas PO4	940 c.		985 пл.			
	980 пл.		995 сл.			
$v_s PO_2$	1050 пл.	1020 пл.	1060 сл.	1045 c.		
	1100 пл.	1050 сл.	1100 сл.	1095 c.		
	1110 o.c.	1100 c.	1110 пл.			
$v_{as} PO_2$	1140 пл.	1140 пл.	1130 пл.	1138 c.		
	1180 пл.	1180 сл.	1140 пл.	1166 c.		
	1210 пл.	1210 сл.	1180 сл.	1260 o.c.		
		1290 пл.	1195 пл.			
			1230 сл.			

Таблиця 2. ІЧ-спек	ри синтезованих фос	фатних сполук (см ⁻¹)
---------------------------	---------------------	-----------------------------------

Примітки. Коливання в ІЧ-спектрі: пл. – плече, с. – сильне, сл. – слабке, о.с. – особливо сильне, ср. – середнє.

важка сполуки становила 0,301 г, швидкість нагрівання 5 град. хв⁻¹). При проведенні деріватографічних досліджень встановлено, що подвійний фосфат NaMn(PO₃)₃ конгруентно плавиться за температури 850 °C.

Структура сполуки відноситься до орторомбічній сингонії, пр. гр. P2₁2₁2₁, і має параметри кристалічної решітки: a = 14,446(2), b = 14,463(2), c = 14,522(3) Å, V = 3034 Å³, Z = 16, $\rho_{вирах} = 2,757$ г/см³.

У масив даних було введено поправку на фактор Лоренца та приведена емпірична корекція на поглинання. Розрахунок структури NaMn(PO₃)₃ виконано у анізотропному наближенні теплових параметрів для всіх атомів [15]. Позиційні параметри атомів із стандартними відхиленнями наведені у табл. 3.

На рис. 2 зображена проекція структури NaMn(PO₃)₃ на площину *xz*. Структура NaMn(PO₃)₃ каркасна і побудована з октаедрів [MnO₆] і [NaO₆] та нескінченних поліфосфатних ланцюжків (PO₃)_{∞}. Поліфосфатні ланцюжки мають надзвичайно великий період повторюваності з 24 тетраедрів [PO₄] і направлені вздовж [100] навколо гвинтової осі 2₁. Атоми ман-

гану оточені кінцевими атомами оксигену тетраедрів [PO₄]. Довжина зв'язків Mn–O та Na–O в октаедрах [MnO₆] і [NaO₆] наведені в табл. 4. Присутність статистично невпорядкованих атомів Na(3), Na(4) та Na(4A) в пустотах структури обумовлює деякі фізичні властивості синтезованих сполук подвійного фосфату, зокрема, іонну провідність.

Рис. 2. Проекція структури NaMn(PO₃)₃ на площину хz

Атом	r/a	v/b	7/c	Um
Mn(1)	8842(4)	3613(3)	1228(4)	7(7)
Mn(2)	3748(4)	6249(4)	1220(4)	10(8)
Mn(3)	3747(4)	3720(4)	3760(4)	10(8)
Mn(4)	1319(4)	1131(3)	1286(3)	4(6)
Na(1)	10050(1)	10(1)	-170(1)	11(3)
Na(2)	5030(1)	-60(1)	-10(2)	21(4)
Na(3)	7540(1)	2520(1)	2480(1)	23(3)
Na(4)	2470(1)	2590(1)	2540(1)	21(3)
P(1)	5273(7)	5217(8)	2645(7)	15(2)
P(2)	7258(6)	5010(6)	2217(5)	9(1)
P(3)	7456(5)	5227(6)	0207(6)	3(1)
P(4)	7229(5)	7234(5)	-196(5)	3(9)
P(5)	5260(5)	7401(6)	-273(5)	6(1)
P(6)	4971(6)	7690(1)	-2257(8)	25(2)
P(7)	5270(1)	9850(1)	-2370(1)	52(5)
P(8)	7224(7)	9899(8)	-2724(9)	20(2)
P(9)	7380(5)	9777(6)	-4766(7)	7(1)
P(10)	7/09(5)	7/39(6)	-4919(4)	2(1)
P(11)	96/5(4)	7550(6)	-4761(5)	6(1)
P(12)	10130(8)	//42(6)	-2/2/(6)	13(2)
O(1)	4/30(2) 6210(2)	4000(1)	2620(2)	10(5)
O(2)	5530(2)	6260(2)	3040(2)	16(4)
O(3)	4730(2)	5270(2)	1770(2)	22(5)
O(4)	7020(1)	5360(1)	1170(1)	13(3)
0(5)	7020(1)	4100(1)	2180(1)	3(2)
O(0)	7730(1)	5 920(1)	2720(1)	5(2) 6(2)
O(7)	7720(1)	5650(1) 6240(1)	2730(1)	0(3)
0(8)	7720(1)	0240(1)	-110(1)	5(2)
O(9)	8340(2) 6700(2)	4720(2)	290(2)	13(4)
O(10)	7680(1)	4920(2)	-430(2)	10(4)
O(11)	7030(1)	7670(2)	810(1)	10(3)
0(12)	6250(1)	6980(1)	-490(1)	2(2)
O(13)	4750(2)	7480(1)	-1210(2)	18(4)
O(15)	4890(1)	6590(1)	290(1)	8(3)
O(16)	5340(1)	8340(1)	130(1)	3(2)
O(17)	5720(4)	8740(4)	-2290(4)	8(2)
O(18)	4140(3)	7760(3)	-2790(2)	44(7)
O(19)	5700(2)	7140(2)	-2540(2)	20(4)
O(20)	4770(2)	9760(2)	-3240(1)	7(3)
O(21)	4810(2)	10260(2)	-1640(2)	26(5)
O(22)	6200(4)	10130(3)	-2470(2)	54(9)
O(23)	7640(2)	10830(2)	-2930(2)	13(3)
O(24)	7570(3)	9290(3)	-2150(3)	16(1)
O(25)	7010(1)	9500(1)	-3750(1)	14(3)
O(26)	6550(1)	10220(1)	-5190(1)	3(2)
O(27)	8310(1)	10130(1)	-4660(1)	7(3)
O(28)	7370(1)	8740(1)	-5230(1)	11(3)
O(29)	8660(1)	7880(1)	-4450(1)	7(2)
O(30)	7760(1)	7200(1)	-5780(1)	4(2)
O(31)	7090(1)	7430(1)	-4130(1)	7(3)
O(32)	9610(1)	6620(1)	-5230(2)	9(3)
O(33)	10200(2)	8380(2)	-5070(2)	23(5)
O(34)	10060(1)	7220(1)	-3730(1)	8(3)
O(35)	9250(1)	7760(1)	-2300(1)	5(3)
O(36)	10880(1)	7260(1)	-2240(1)	7(2)

Таблиця З. Координати атомів (×10⁴) і еквівалентні теплові поправки (Å²×10³) для структури NaMn(PO₃)₃

Відстань	Å	Відстань	Å	Відстань	Å	Відстань	Å
Mn(1)-O(6)	2,202	Na(1)-O(1)	2,393	P(1)-O(1)	1,482	P(7)-O(17)	1,736
Mn(1)-O(9)	2,222	Na(1)-O(10)	2,553	P(1)-O(2)	1,623	P(7)-O(20)	1,443
Mn(1)-O(19)	2,183	Na(1)-O(15)	2,332	P(1)-O(3)	1,653	P(7)-O(21)	1,373
Mn(1)-O(21)	2,233	Na(1)-O(20)	2,813	P(1)-O(4)	1,483	P(7)-O(22)	1,415
Mn(1)-O(31)	2,082	Na(1)-O(26)	2,332	P(2)-O(2)	1,513	P(8)-O(22)	1,565
Mn(1)-O(33)	2,203	Na(1)-O(32)	2,443	P(2)-O(5)	1,632	P(8)-O(23)	1,512
Mn(2)-O(4)	2,153	Na(2)-O(1)	2,443	P(2)-O(6)	1,492	P(8)-O(24)	1,304
Mn(2)-O(11)	2,192	Na(2)-O(9)	2,523	P(2)-O(7)	1,552	P(8)-O(25)	1,623
Mn(2)-O(15)	2,182	Na(2)-O(16)	2,352	P(3)-O(5)	1,532	P(9)-O(25)	1,602
Mn(2)-O(24)	2,304	Na(2)-O(21)	2,424	P(3)-O(8)	1,572	P(9)-O(26)	1,482
Mn(2)-O(26)	2,152	Na(2)-O(27)	2,442	P(3)-O(9)	1,462	P(9)-O(27)	1,442
Mn(2)-O(35)	2,232	Na(2)-O(33)	2,453	P(3)-O(10)	1,502	P(9)-O(28)	1,632
Mn(3)-O(1)	2,082	Na(3)-O(6)	2,343	P(4)-O(8)	1,602	P(10)-O(28)	1,582
Mn(3)-O(12)	2,162	Na(3)-O(11)	2,293	P(4)-O(11)	1,452	P(10)-O(29)	1,542
Mn(3)-O(16)	2,142	Na(3)-O(19)	2,593	P(4)-O(12)	1,582	P(10)-O(30)	1,462
Mn(3)-O(23)	2,092	Na(3)-O(24)	2,675	P(4)-O(13)	1,522	P(10)-O(31)	1,522
Mn(3)-O(27)	2,202	Na(3)-O(31)	2,383	P(5)-O(13)	1,582	P(11)-O(29)	1,602
Mn(3)-O(36)	2,092	Na(3)-O(35)	2,623	P(5)-O(14)	1,543	P(11)-O(32)	1,502
Mn(4)-O(7)	2,032	Na(4)-O(7)	2,573	P(5)-O(15)	1,522	P(11)-O(33)	1,483
Mn(4)-O(10)	2,022	Na(4)-O(12)	2,413	P(5)-O(16)	1,472	P(11)-O(34)	1,662
Mn(4)-O(18)	2,194	Na(4)-O(18)	2,424	P(6)-O(14)	1,583	P(12)-O(3)	1,613
Mn(4)-O(20)	2,142	Na(4)-O(23)	2,363	P(6)-O(17)	1,866	P(12)-O(34)	1,632
Mn(4)-O(30)	2,162	Na(4)-O(30)	2,622	P(6)-O(18)	1,424	P(12)-O(35)	1,412
Mn(4)-O(32)	2,152	Na(4)-O(36)	2,422	P(6)-O(19)	1,383	P(12)-O(36)	1,462

Таблиця 4. Довжини зв'язків (Å) в структурі NaMn(PO3)з

Таке поєднання структурних фрагментів призводить до "стягування" октаедрів поліфосфатними ланцюжка ми з тетраедрів [PO₄], внаслідок чого формується жорсткий каркас структури NaMn(PO₃)₃. Заміщення атомів натрію на літій в структурі, на нашу думку, можна використати для створення каналів в пустотах, що призведе до підвищеної йонної провідності. Це може бути використано для створення функціональних матеріалів на основі подвійного поліфосфату NaMn(PO₃)₃.

Висновки

У розплавах системи Na₂O–P₂O₅–Mn₂O₃ в діапазоні температур 650–900 °C виділено область кристалізації нового подвійного фосфату NaMn(PO₃)₃. При цьому підібрано оптимальні умови для вирощування монокристалів сполуки з високим виходом (понад 45 % мас.), досліджено їх ряд фізико-хімічних характеристик та встановлено температуру плавлення сполуки -850 °C. Проведено повний PCA синтезованого фосфату NaMn(PO₃)₃ та встановлено особливості його будови: статистично невпорядковані атоми лужного металу з характерним координаційним числом (6); рекордний період повторюваності тетраедрів [PO₄] у поліфосфатних ланцюжках структури становить 24; каркає сполуки містить "тунелі", які можна використовувати і модифікувати. Дану синтезовану сполуку можна розглядати як перспективний матеріал, який може володіти корисними фізико-хімічними властивостями та мати каталітичні функції щодо органічного синтезу, зокрема каталізу алканів.

Такі одержані результати мотивують до подальшого дослідження сполуки та створенні матеріалів на її основі.

Література

1. Orlova A.I., Koruttseva A.K., Loginova E.E. The phosphate family of langbaenite structure. Crystal-chemical aspect of immobilization of radioactive waste. *Radiochemistry*. 2011. **53** (1). 51.

2. Urenski P., Rosenman G. Polarization reversal and domain anisotropy in flux-grown KTiOPO₄ and isomorphic crystals. *J. Mater. Res.* 2001. **16** (5). 1493.

3. Pet'kov V.I., Asabina E.A., Lukuttsov A.A. Immobilization of cesium into mineral-like matrices of tridymite, konsarite, and langbeinite structure. *Radiochemistry*. 2015. **57** (6). 632.

4. Stus N.V., Nagornyj P.G., Slobodyanik N.S. Ferroelecric properties of crystal of the KTP group. *Ukr. Khim. Zh.* 2000. **66** (2). 72.

5. Zatovsky I.V., Slobodyanik N.S., Uschapivska T.I. et al. Formation of complex phosphates $K_2M^{III}Sn(PO_4)_3$ from solutions in melts under crystallization conditions.

Funtc. Mater. 2017. 24 (2). 298.

6. Nagorny P.G., Slobodyanik N.S., Uschapivska T.I. et al. Double phosphates $NaMn_6(P_3O_{10})(P_2O_7)_2$ and $KMn_6(P_3O_{10})(P_2O_7)_2$ – advanced functional materials. *Funtc. Mater.* 2018. **25** (4). 1–6.

7. Kasthuri K.L., Raghavendra P.B., Subramanian C.K. New Titanium-Vanadium Phosphates of Nasicon and Langbeinite Structures, and Differences between the Two Structures toward Deintercalation of Alkali Metal. *J. Solid State Chem.* 1994. **3** (1). 41.

8. Zatovsky I.V., Slobodyanik N.S., Ivanenko V.I. et al. Incorporation of hafnium (IV) into KTP framework from phosphate-fluoride fluxes. *Cryst. Res. & Tech.* 2015. **51** (2). 178.

9. William T.A., Harrison L.F. and Mark Phillips. Syntheses, Structures, and Properties of RbScFAsO₄ and CsScFAsO₄: Scandium-Containing Analogues of Potassium Titanyl Phosphate (KTiOPO₄). *Chem. Mater.* 1999. **4** (11). 3555.

10. Орлова А.И., Петьков В.И., Гульянова С.Г., Ермилова М.М. Каталитические свойства новых сложных ортофосфатов циркония и железа. *Журн. физ. химии.* 2016. **73** (11). 1965–1967.

11. Ogorodnyk I.V., Baumer V.N., Zatovsky I.V. et al. Equilibrium langbeinite-related phosphates $Cs_{1+x}Ln_xZr_{2-x}(PO_4)_3(Ln = Sm-Lu)$ in the melted systems $Cs_2O-P_2O_5-LnF_3-ZrF_4$. *Acta Cryst. Sec. B.* 2007. **63.** 819.

12. Nagorny P.G., Kornienko Z.I. Effect of sodium fluoride on the interection and crystal formation in the Na₂O– NiO–P₂O₅ system. *Ukr. Khim. Zh.* 2004. **70** (1). 74.

13. Chudinova N.N., Murashova E.V., Zaharova B.S. New complex phosphates of manganese and different metals. *J. Inorg. Chem.* 1998. **43** (6). 885.

14. Murashova E.V., Chudinova N.N. Solid faze synthesis of doubles phosphates Mn (II) and Mn (III). *Inorg. Mater.* 1998. **10** (34). 1019.

15. Huang Q., Hwu S.J. Synthesis and characterization of three new layered phosphates, $Na_2MnP_2O_7$, $NaCsP_2O_7$ and $NaCsMn_{0.35}Cu_{0.65}P_2O_7$. *Inorg. Chem.* 1998. 37. 5869.

References

1. Orlova A.I., Koruttseva A.K., Loginova E.E. The phosphate family of langbaenite structure. Crystal-chemical aspect of immobilization of radioactive waste. *Radiochemistry*. 2011. **53** (1). 51. [In English].

2. Urenski P., Rosenman G. Polarization reversal and domain anisotropy in flux-grown KTiOPO₄ and isomorphic crystals. *J. Mater. Res.* 2001. **16** (5). 1493. [In English].

3. Pet'kov V.I., Asabina E.A., Lukuttsov A.A. Immobilization of cesium into mineral-like matrices of tridymite, konsarite, and langbeinite structure. *Radiochemistry*. 2015. 57 (6). 632. [In English].

4. Stus N.V., Nagornyj P.G., Slobodyanik N.S. Ferroelecric properties of crystal of the KTP group. *Ukr. Khim. Zh.* 2000. **66** (2). 72. [In English].

5. Zatovsky I.V., Slobodyanik N.S., Uschapivska T.I. et al. Formation of complex phosphates $K_2M^{III}Sn(PO_4)_3$ from solutions in melts under crystallization conditions. *Funtc. Mater.* 2017. **24** (2). 298. [In English].

6. Nagorny P.G., Slobodyanik N.S., Uschapivska T.I. et al. Double phosphates $NaMn_6(P_3O_{10})(P_2O_7)_2$ and $KMn_6(P_3O_{10})(P_2O_7)_2$ – advanced functional materials. *Funtc. Mater.* 2018. **25** (4). 1–6. [In English].

7. Kasthuri K.L., Raghavendra P.B., Subramanian C.K. New Titanium-Vanadium Phosphates of Nasicon and Langbeinite Structures, and Differences between the Two Structures toward Deintercalation of Alkali Metal. *J. Solid State Chem.* 1994. **3** (1). 41. [In English].

8. Zatovsky I.V., Slobodyanik N.S., Ivanenko V.I. et al. Incorporation of hafnium (IV) into KTP framework from phosphate-fluoride fluxes. *Cryst. Res. & Tech.* 2015. **51** (2). 178. [In English].

9. William T.A., Harrison L.F. and Mark Phillips. Syntheses, Structures, and Properties of RbScFAsO₄ and CsScFAsO₄: Scandium-Containing Analogues of Potassium Titanyl Phosphate (KTiOPO₄). *Chem. Mater.* 1999. **4** (11). 3555. [In English].

10. Orlova A.I., Pet'kov V.I., Gul'yanova S.G., Yermilova M.M. Kataliticheskiye svoystva novykh slozhnykh ortofosfatov tsirkoniya i zheleza. *Zhurn. fiz. khimii.* 2016. **73** (11). 1965–1967. [In Russian].

11. Ogorodnyk I.V., Baumer V.N., Zatovsky I.V. et al. Equilibrium langbeinite-related phosphates $Cs_{1+x}Ln_xZr_{2-x}(PO_4)_3(Ln = Sm-Lu)$ in the melted systems $Cs_2O-P_2O_5-LnF_3-ZrF_4$. Acta Cryst. Sec. B. 2007. **63.** 819. [In English].

12. Nagorny P.G., Kornienko Z.I. Effect of sodium fluoride on the interection and crystal formation in the Na₂O– NiO–P₂O₅ system. *Ukr. Khim. Zh.* 2004. **70** (1). 74. [In English].

13. Chudinova N.N., Murashova E.V., Zaharova B.S. New complex phosphates of manganese and different metals. *J. Inorg. Chem.* 1998. **43** (6). 885. [In English].

14. Murashova E.V., Chudinova N.N. Solid faze synthesis of doubles phosphates Mn (II) and Mn (III). *Inorg. Mater.* 1998. **10** (34). 1019. [In English].

15. Huang Q., Hwu S.J. Synthesis and characterization of three new layered phosphates, Na₂MnP₂O₇, NaCsP₂O₇ and NaCsMn_{0,35}Cu_{0,65}P₂O₇. *Inorg. Chem.* 1998. 37. 5869. [In English].

Надійшла до редакції 01.10.2019

Growth of monocrystals of double polyphosphate NaMn (PO₃)₃ and its structure

R.V. Lavrik¹, V.V. Trachevsky², V.A. Diamant³

¹National University of Life and Environmental Sciences of Ukraine,

17, Heroyiv Oborony Str., 03041 Kyiv, Ukraine, e-mail: ruslan_lav@ukr.net;

36, Academician Vernadsky Blv., 03142 Kyiv, Ukraine;

³Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine,

32/34, Academician Palladin Ave., 03142 Kyiv, Ukraine

Optimum conditions for the growing of single crystals of NaMn(PO₃)₃ compound have been selected. Complete X-ray diffraction analysis has been performed to study synthesized polyphosphate Li₂Mn(PO₃)₄. Structure of the double phosphate belongs to the orthorhombic crystal system, space group $P2_12_12_1$, lattice parameters: a = 14.446(2), b = 14.463(2), c = 14.522(3) Å, V = 14.522(3)= 3034 Å³, Z = 16, $\rho_{calc.}$ = 2.757 g/cm³. Structural features of synthesized phosphate have been determined. The compound has been studied using XRD/RSA, DTA and IR spectroscopy techniques along with complete chemical analysis. The crystalline structure of novel double phosphate NaMn(PO₃)₃ has been determined using X-ray diffraction method. X-ray diffraction analysis of white crystals with rhomboidal habit having size of $0.1 \times 0.019 \times 0.2$ mm has been performed using Siemens P3/PC diffractometer under molybdenum radiation with graphite monochromator. As a result of experiment, 3018 reflections (within $0 \le h \le 11$; $0 \le k \le 11$; $-12 \le 1 \le 0$) have been obtained, of which 2133 independent reflections with $F > 4\delta$ (I) have been used for calculations. The integrated intensity has been measured using $2\theta:\theta$ method over the range of angles $4.88 \le \theta \le 50.14$ at scan rate of 2–28 degrees per minute. Crystalline lattice parameters have been refined according to 36 reflections within the range of angles $16.0 \le \theta \le 32.0$. The final value of the divergence factor is $R_w = 0.0547$. The crystallization range of new double phosphate NaMn(PO₃)₃ has been determined in the melts of Na₂O-P₂O₅-Mn₂O₃ system at a temperature range of 650-900 °C. Furthermore, optimum conditions for the growing of single-crystals of the compound with high yield (over 45 % of weight) have been selected, the series of their physical and chemical properties have been studied and the melting point of the compound has been determined -850 °C. A complete XRD of the synthesized polyphosphate NaMn(PO₃)₃ has been performed and the special features of its structure have been defined: statistically disordered alkali metal atoms with a characteristic coordination number (6); the record period of repetition of tetrahedra [PO₄] in the polyphosphate chains of the structure is 24; the framework of the compound contains "tunnels", that can be used and modified. These results stimulate further research of the compound and creation of materials on its basis.

Keywords: double phosphates, IR spectroscopy, PCA, crystallization of single crystallization from a melt

²G.M. Kurdyumov Institute for Metal Physics of the NAS of Ukraine,

Выращивание монокристаллов двойного полифосфата NaMn(PO₃)₃ и его структура

Р.В. Лаврик¹, В.В. Трачевский², В.А. Диамант³

¹Национальный университет биоресурсов и природопользования Украины, Украина, 03041 Киев, ул. Героев обороны, 17, e-mail: ruslan_lav@ukr.net; ²Институт металлофизики им. Г.В. Курдюмова НАН Украины, Украина, 03142 Киев, бул. Академика Вернадского, 36; ³Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Украина, 03142 Киев, просп. Палладина, 32/34

Подобраны оптимальные условия для выращивания монокристаллов соединения NaMn(PO₃)₃. Проведено полное рентгеноструктурное исследование синтезированного полифосфата NaMn(PO₃)₃. Структура соединения принадлежит к орторомбической сингонии, пространственная группа P2₁2₁2₁, а = 14,446(2), b = 14,463(2), c = 14,522(3) Å, V = 3034 Å³, Z = 16, $\rho_{вираx} = 2,757$ г/см³. Установлены особенности строения синтезированного фосфата. Соединение исследовано методами рентгеноструктурного анализа, дифференциального термического анализа, ИК-спектроскопии, проведен его полный химический анализ.

Ключевые слова: двойные фосфаты, ИК-спектроскопия, РСА, выращивание монокристаллов, кристаллизация из расплава