1

Каталізатори гідрогенізації СО2 в компоненти моторних палив

Ю.В. Білокопитов¹, С.Л. Мельникова², Н.Ю. Хімач²

¹Національний авіаційний університет, пр. Любомира Гузара 1, Київ, Україна 03058 ²Інститут біоорганічної хімії та нафтохімії ім. В.П. Кухаря НАН України, Харківське шосе, 50, Київ, Україна, 02160 <u>himyla@gmail.com</u>, <u>shtrihi@gmail.com</u>

 CO_2 – шкідливий парниковий газ, продукт викидів хімічних виробництв, згоряння викопного палива та автомобільних вихлопів, одночасно є загальнодоступним джерелом карбону. В огляді розглядаються різні шляхи гідрогенізації діоксиду карбону в компоненти моторних палив – метанол, диметиловий етер, етанол, вуглеводні – в присутності гетерогенних каталізаторів. На кожному маршруті перетворення CO_2 (в оксигенати або вуглеводні) першою стадією є утворення CO за оберненою реакцією водяного газу, що необхідно враховувати при виборі каталізаторів процесу. Аналізується вплив хімічної природи, питомої поверхні, розміру часток і взаємодії між компонентами каталізатора, а також способу його одержання на перебіг процесів перетворення CO_2 .

Зазначається, що основними активними компонентами перетворення CO_2 в метанол є атоми і йони міді, що взаємодіють з оксидними складовими каталізатора. Простежується позитивний вплив на активність традиційного мідь-цинк-алюмінійоксидного каталізатора синтезу метанолу з синтез-газу добавок оксидів інших металів, зокрема тих, що мають сильні основні центри на поверхні. Найактивнішими каталізаторами синтезу диметилового етеру (ДМЕ) з CO_2 і H_2 є біфункціональні, що, поряд з каталізатором синтезу метанолу, містять дегідратуючий компонент, наприклад, мезопористі цеоліти з кислотними центрами слабкої та середньої сили, рівномірно розподіленими на поверхні.

Синтез вуглеводнів бензинового ряду ($\geq C_5$) здійснюється на поліфункціональних каталізаторах, що також містять цеоліти, через утворення CO або CH₃OH і ДМЕ як проміжних продуктів. Гідрогенізація CO₂ в етанол може розглядатися як альтернатива синтезу етанолу через гідратацію етилену, основними проблемами залишаються жорсткі умови синтезу, висока енергія активації діоксиду вуглецю, а також висока селективність за вуглеводнями, зокрема, за метаном.

Подальше підвищення селективності і ефективності процесів гідрогенізації діоксиду вуглецю передбачає використання нанорозмірних каталізаторів з урахуванням механізму реакцій перетворення CO₂, розробку способів вилучення із зони реакції надлишкової води як бічного продукту та підвищення стабільності каталізаторів у часі.

Ключові слова: Гідрогенізація, двооксид карбону, каталізатор, метанол, етанол, диметиловий етер, вуглеводні.

Bcmyn

Зростання глобальної температури атмосфери безпосередньо пов'язане з викидами парникових газів, одним з яких є діоксид вуглецю CO₂. Рівень CO₂ в атмосфері є попереджувальним сигналом для здоров'я нашої планети. Утворення та накопичення в атмосфері діоксиду вуглецю за останні 50 років зросло на 20 % [1]. Прогнози щодо викидів СО2 оцінюються приблизно в 57 Гт на 2050 рік [1, 2]. Для зменшення його кількості необхідне поєднання багатьох складових - економії енергії, використання альтернативних джерел енергії, технологій вловлювання СО2 та повторного його використання. Одним із найбільш перспективних методів перетворення CO₂ в корисне паливо і хімікати є його гідрогенізація в присутності гетерогенних каталізаторів [1-5]. Можливі маршрути гідрогенізації СО₂ показано на рис. 1.

Одержання компонентів моторних палив, в залежності від каталізатора, відбувається за двома основними напрямками: конверсія CO₂ у вуглеводні; конверсія CO₂ в оксигенати.

На кожному маршруті першою стадією є утворення СО за оберненою реакцією водяного газу (1):

$$_{n}CO_{2} + _{n}H_{2} \rightleftharpoons _{n}CO + _{n}H_{2}O$$
 (1)

На першому маршруті (конверсія у вуглеводні) подальше гідрування СО за реакцією Фішера-Тропша спочатку приводить до утворення олефінів і води [6]:

$$_{n}CO + _{2n}H_2 \rightleftharpoons C_nH_{2n} + _{n}H_2O$$
 (2)

Сумарна реакція гідрування СО₂ в олефіни виглядає як:

$$_{2}CO_{2} + 3_{n}H_{2} \rightleftharpoons C_{n}H_{2n} + 2_{n}H_{2}O$$
 (3)

Гідрування утворених олефінів у присутності відповідних каталізаторів дає парафіни [7-12]:

 $C_n H_{2n} + H_2 \rightleftharpoons C_n H_{2n} + 2 \tag{4}$

Утворення оксигенатів шляхом гідрування CO₂ відбувається за реакціями:

$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$	(5)
$2CH_3OH \rightleftharpoons CH_3OCH_3 + H_2O$	(6)

Сумарна реакція одержання диметилового етеру гідруванням CO₂ в цьому випадку виглядає так:

Рис. 1. Можливі маршрути гідрогенізації СО2 [1]

Процес утворення бензину з диметилового етеру (ДМЕ) починається за певних умов з реакції його дегідратації:

$$nCH_3OCH_3 \rightarrow 2(CH_2)_n + nH_2O \tag{8},$$

з наступною складною послідовністю реакцій олігомеризації, циклізації, диспропорціонування та ізомеризації з утворенням бензину [10].

При одержанні етанолу з CO₂ перевага надається не типовому процесу гомологізації метанолу, а прямому синтезу [1, 4]:

$$2\mathrm{CO}_2 + 6\mathrm{H}_2 \rightarrow \mathrm{C}_2\mathrm{H}_5\mathrm{OH} + 4\mathrm{H}_2\mathrm{O} \tag{9}$$

Основна проблема використання чистого CO₂ як сировини полягає в високій термодинамічній стабільності та низькій реакційній здатності його молекул. Зниження енергії активації молекул CO₂ в хімічних реакціях досягається за допомогою каталізаторів – як гомогенних, так і гетерогенних.

В представленій роботі розглянуто каталітичні системи, які застосовуються для процесів конверсії діоксиду вуглецю у компоненти моторних палив та проведено систематичний аналіз впливу різних факторів на їх активність. Зазначено особливості зміни активності каталітичних систем у відповідності до таких параметрів як: наявність та тип носія, морфологічні особливості, розмірний ефект, синергетична дія складових каталізатора, наявність або відсутність промоторів, способи одержання каталізаторів тощо. Узагальнені основні передумови для виготовлення каталітичного контакту з високою активністю по відношенню до утворення метанолу, диметилового етеру, вуглеводнів та етанолу з СО₂.

Гідрогенізація СО2 у метанол

Класичними каталізаторами, що були вперше застосовані в конверсії CO₂ в метанол, є каталізатори на основі Cu/ZnO, зокрема, мідь-цинк-алюмооксидні, що широко використовуються в промисловості в процесі синтезу метанолу із синтез-газу [13-15]. В літературі відзначається синергетична дія основних складових елементів мідно-цинкових контактів, яка має вирішальне значення у формуванні активного каталітичного центру Cu+-O-Zn [16-21]. Встановлено, що активність каталізатора зростає зі збільшенням дефектів і деформацій в структурі активних компонентів каталізатора на поверхні [18-20]. Втім, через утворення за реакціями (1), (5) значної кількості H₂O як побічного продукту, що дезактивує активні центри, а також високу інертність молекул CO₂, згадані каталізатори виявляють меншу ефективність в реакціях гідрогенізації CO₂, ніж в реакціях гідрогенізації CO₂ здійснювались з використанням нанорозмірних каталізаторів [3, 4, 21-39].

Вплив морфології наночастинок Си на поверхні ZnO, сформованої різними газами-відновлювачами (H₂, CO), на конверсію CO₂ показано в роботі [21]: відновлення воднем спричинило утворення дрібних нерегулярних сферичних наночастинок Cu, вкритих великою кількістю Zn, що сприяло конверсії CO₂ і синтезу метанолу, на відміну від відновлення в атмосфері CO, в якій розмір відновлюваних частинок Cu збільшувався, ймовірно, через їх агломерацією, а кількість Zn, який мігрував на поверхню Cu, зменшувався, що значно погіршувало каталітичні характеристики гідрування CO₂.

Роль ZnO у розподіленні наночастинок міді розміром 14–18 нм на поверхні та у запобіганні їх спіканню показано в роботі [22] з використанням модифікованого карбону як носія.

В [23] порівнюються каталітичні властивості нанокомпозиції Cu/ZnO (співвідношення Cu/Zn=7/3, наближене до складу промислового метанольного каталізатора), нанесеної на різні носії – Al₂O₃, SiO₂, ZrO₂, а також твердий кислотний каталізатор типу ZSM-5 в реакції гідрування CO₂ в метанол (табл.1). При використанні цеоліту як носія, в продуктах реакції не знайдено CO – він перетворюється в диметиловий етер, метилформіат і метан [23]. Серед оксидів, досліджених як носії каталізатора, найкращим щодо конверсії CO₂ і селективності за метанолом виявився оксид цирконію ZrO₂, а найгіршим – оксид силіцію SiO₂.

Li C. зі співр. [24] показали, що додавання ZrO₂ до складу традиційного каталізатора Cu/ZnO/Al₂O₃, сприяє підвищенню виходу метанолу в 1,5 рази (табл.1), а також стабільності активності каталізатора у часі, що пояснюється пригніченням інгібуючої дії води через in-situ окиснення активних центрів міді за наявності Zr в складі каталізатора. Наявність Zr у каталізаторі запобігає росту кристалів CuO_x, які викликають незворотну дезактивацію каталізатора [18, 24]. Наголошується на синергізмі у взаємодії між компонентами каталізатора як вирішальному факторі забезпечення його ефективності.

В роботах [32-34] зазначається, що роль оксиду цирконію у складі мідьвмісного каталізатора полягає у поліпшенні розподілення активних центрів міді на поверхні оксиду цирконію та створенні на межі Cu/ZrO₂ активних міжфазних ділянок з високою концентрацією

Габлиця 1. Гідрогенізація СО2 у метанол

N n/n	Каталізатор		P, M∏a	H2/CO2/	Об'ємна	Продукти- вність за	Селективн	ість, %	Ступінь	Поси-
11/11		Спосю синтезу каталізатора	/ I, C	N ₂	швидкість мл/г _{кат} *год	СН3ОН, °снзон/г _{кат} *год	CH ₃ OH	СО	СО2, %	лання
	Cu/ZnO/Al ₂ O ₃						45,38	54,62	18,74	
1	Cu/ZnO/SiO ₂		2 25/250	2/1/0			38,67	61,33	12,55	
1	Cu/ZnO/ZrO ₂	Співосадження в суспензіі	2,25/250	3/1/0		-	48,95	51,05	22,40	23
	Cu/ZnO/ZSM-5	1					74,93	-	20,25	
-	Cu/ZnO/Al ₂ O ₃ (CuZnAl=4/3/3)			3/1/0		0,0688	43	57	18,7	
2	$Cu/ZnO/ZrO_2/Al_2O_3(Cu/Zn/Zr/Al = 4/3/1,5/1,5)$	Співосадження	2 0 1 0 2 0	3/1/0	2240	0,12	60,3	39,7	23.2	
	Cu/ZnO/ZrO ₂ (Cu/Zn/Zr=4/3/3)		3,07230	3/1/0		0.0803	48,6	51,4	19.3	24
3	Cu/ZnO/SiO ₂ (30/70) Cu/Zn=7/3	Аерозольний (SiO ₂) + співосадж. в суспензії	3,0/220	73/24/3	2000	0,0554	57,2	42,8	14,1	25
4	Cu/α -ZrO ₂ (8% Cu)	Метод просочування	1,0/230	3/1/1	4200	0.048	67	33	4.0	34
-	Cu / ZrO ₂ (67/33)		0.0.10.10	3/1/0	14400	0,109	78,8	21,2	2,7	25
5	$Cu/ZnO/ZrO_2(Cu/Zn/Zr = 38.2/28.6/33.2)$	Метод оберненого спивосадження	2,0/240	3/1/0		0.22	32.3	67.8	13.2	35
6	Cu/ZnO/ZrO ₂ /SiO ₂ 1,15 % (41,8/30,9/27,3)	Метод оберненого співосадж. в суспензії SiO2	2,0/240	9/3/1	15600	, , , , , , , , , , , , , , , , , , ,	38	62	13.0	36
	$Cu/ZnO/ZrO_2(Cu/Zn/Zr = 36.5/27.2/36.3)$	Метод оберненого співосадження	2,0/240	9/3/1	15(00	0,20	31,0	69	13,4	27
7	Cu/ZnO/ ZrO ₂ /оксид графену 1,0 % (Cu/Zn/Zr = 35,1/26.8/36.7)	Обернене співосадж. в суспензії оксиду графену			15600	0,275	36,0	64	15,5	37
8	Cu/ZnO/Al ₂ O ₃	Темплатний синтез	3,0/250	3/1/0	8000		52	48	7,5	39
0	Cu/ZnO/ ZnO d=16 нм	Просочування ПММА розчином солей з	2.0./220	75/05/0	(000	0,30	80,2	19,8	18,2	10
9	$ZrO_2(Cu/Zn/Zr=3/2/3)$	цитриновою кислотою та етиленгликолем	3,07220	/5/25/0	6000	0.16	(5	25	11.2	18
10	ZnO d=36 HM		20/240	(()))/10	2400	0,16	65	52.0	11,3	42
10	$CuO/ZnO/TiO_2/ZrO_2(28,3/59,7/3,9/8,1)$	I вердофазнии метод з комплексоутворювачем	3,07240	66/22/12	2400		46,1	53,9	17,8	42
11	$CuO/2nO/110_2/2rO_2(Cu/2n/11/2r=40/40/10/10)$	золь-тель метод		66/22/	2400		44	50	1/	41
11	$\frac{100}{200}$	Гвердофазнии метод з комплексоутворювачем	3,0/240	12	2400		43,/	56,5	16,2	41
	$CuO/ZnO/11O_2/ZrO_2$	Спалювання розчину (solution-combustion) (з					41,9	58,1	15,6	
10	(Cu/Zn/11/Zr=40/40/10/10)	Теграоутилитанатом і цитриновою кислотою)	20/200	0/2/1	14400	0.291	15	55	17	20
12	$Cu/Al_2O_3/CeO_2(60\% Cu)$	Співосадження	3,0/260	9/3/1	14400	0,381	45	22	1/	28
13	$CuO/CeO_2/ZrO_2 30\%$ CuO $CeO_2/ZrO_2=35/35$	Спвосадження	3,07250	3/1/1	/300	0,165	55,8	40,2	14,5	31
14	Cu-Ni ₂ /CeO ₂ -NT	Співосадження+гідротермальнии синтез + просочування NT	3,0/260	3/1/1	6000	0,579	78,8	21,2	17,8	29
	Cu/ZnO/Al ₂ O ₃	Співосадження				0,310	31,2	68,8	23,1	
15	Cu/ZnO/C (CuO/ZnO=2)	Піроліз+просочування	4,0/260	75/25/0	3600	0,1*				22

Примітки: * - моль _{СНЗОН}/моль _{Сикат} год (TOF)

поверхневих аніонних вакансій, на яких зростає адсорбція діоксиду [34] або оксиду [32, 33] вуглецю і швидкість гідрогенізації їх в метанол.

На активність каталізатора впливає спосіб його одержання і фазовий стан оксиду цирконію: продуктивність контактів в синтезі метанолу зменшується в ряду: Cu/α-ZrO₂ (аморфна α-форма) – Cu/m-ZrO₂ (моноклинна форма) – Cu/t-ZrO₂ (тетрагональна форма) із зниженою концентрацією кисневих вакансій [32 - 34].

На важливості синергічної дії оксидів ZnO – ZrO₂ в конверсії СО2 акцентують увагу автори [18, 35 - 37]. Показано [35], що за рівних умов експерименту продуктивність каталізатора Cu-ZnO-ZrO2 вдвічі вища, ніж двокомпонентного каталізатора Cu-ZrO2 (табл.1). Зростання вмісту Zn і Zr в складі каталізатора до певної величини (Cu/Zn ~ 7/10, Zr ~ 33 %) спричиняє підвищення питомої поверхні каталізатора, рівномірне диспергування металевих компонентів (Cu, Zn та Zr), що зменшує розмір кристалітів CuO до 6,8 нм та підвищує концентрацію активних центрів [35]. Активність CuO-ZnO-ZrO2 каталізатора дещо зростає при оберненому співосадженні активних компонентів в суспензії нанорозмірного SiO₂ (0,5 - 1,5% від маси прожареного каталізатора) [36], що пояснюється кращим диспергуванням активних центрів на поверхні, а також гальмуванням оберненої реакції водяного газу. Дещо більше підвищення активності каталізатора спостерігалось при оберненому співосадженні в суспензії наночасток оксиду графену (табл.1), що пояснюється підвищенням концентрації активних центрів для адсорбції CO2 та H2, а також впливом наноструктури оксиду графену, який виконує функції містка між оксидами металів та промотує спіловер водню з поверхні міді на вуглець та адсорбовані на ньому оксиди металів [37]. Явищу спіловеру водню в аналогічних каталітичних системах приділяється увага також в [32, 40].

Вплив розмірного ефекту на активність каталізатора наочно показано для каталізаторів Cu/ZnO/Al₂O₃ і Cu-ZnO-ZrO₂, отриманих з використанням методу темплатного синтезу з тримезиновою кислотою [39] і поліметилметакрилатом [18]. Зі зменшенням розміру часток ZnO в каталізаторі Cu-ZnO-ZrO2 від 35 до 16 нм (розмір частинок ZrO₂ в усіх дослідах становив 3–4 нм) конверсія СО2 в метанол і вихід метанолу зростали майже вдвічі (табл.1). В роботі [18] зазначається, що зменшення розміру частинок ZnO не впливає на розмір і розподіл активних центрів міді, але підвищує синергетичний вплив ZnO i ZrO₂ на адсорбцію і активацію гідрування CO2 в метанол на поверхні Cu-ZnO-ZrO2каталізаторів. Методом ІЧ-Фур'є спектроскопії in situ під тиском 3 МПа в поєднанні з теоретичними розрахунками (метод DFT) було доказано, що на межі розділу ZnO – ZrO2 посилюється адсорбція, активація і перетворення СО2 через утворення додаткових кисневих вакансій.

В ряді робіт показано високу каталітичну активність нанорозмірного оксиду церію в конверсії СО2 в метанол [26-29]. Досліджено вплив морфології наноструктурованого оксиду церію в каталізаторі Cu/CeO2 на синтез метанолу та встановлено задовільну його каталітичну активність [26]. Велика увага оксиду церію СеО2 як компонента каталізатора гідрогенізації СО2 приділяється через високу основність поверхні, наявність кисневих вакансій і високу адсорбційну взаємодію з побічним продуктом – оксидом вуглецю, що гальмує перебіг оберненої реакції водяного газу [28]. Встановлено синергетичний ефект комбінації оксидів алюмінію та церію Al₂O₃/CeO₂, який сприяє пригніченню росту кристалів міді, і, як наслідок, підвищенню концентрації активних центрів Си⁺ на поверхні та взаємодію Cu(111)-CeO₂, що промотує утворення метанолу. Серед каталізаторів Cu/Al₂O₃, Cu/CeO₂ і Cu/Al₂O₃/CeO₂ з однаковим вмістом міді Cu (60 мас.%) найкращим виявився останній [28] (табл.1). Високу ефективність також показав Си-Ni-Ce-вмісний каталізатор на основі нанотрубок CeO₂ [29, 30], а також Си-Се-Zr- каталізатор [31].

Вплив різних промоторів – добавок оксидів ряду металів (Мп, La, Ce, Y, Zr) на активність типового Cu/Zn/Al-каталізатора синтезу метанолу досліджено в роботі Gao та співр [38]. Селективність за метанолом зростала в ряду: CuZnAl < Cu/Zn/Al/Mn < Cu/Zn/Al/La < Cu/Zn/Al/Ce <Cu/Zn/Al/Y < Cu/Zn/Al/Zr, який корелює з концентрацією сильних осно́вних центрів на поверхні каталізатора.

Різні способи одержання каталізаторів складу СиО-ZnO-TiO₂-ZrO₂ та їх вплив на фізико-хімічні властивості і активність в реакції гідрогенізації СО2 порівнюються в роботі [41]: твердофазний, золь-гель метод. змішування етанольних розчинів солей-прекурсорів з комплексоутворювачем з подальшим випалюванням органічних компонентів ("solution-combustion"). Виявилось, що морфологія поверхні, структура, адсорбційна активність до реагентів, а також каталітична активність для каталізатора, виготовленого золь-гель методом з комплексоутворюючим компонентом (тетрабутилтітанатом і цитриновою кислотою), є найкращими з досліджуваних (табл. 1). Позитивний вплив комплексоутворювачів (цитринової або оксалатної кислоти) одержано і в інших дослідженнях [напр., 18, 42]. Комплексоутворювачі виконують функції темплату, поліпшуючи дисперсію компонентів, їх взаємодію, відновлюваність CuO, а також збільшуючи поверхневий вміст і зовнішню поверхню металічної міді, в результаті чого конверсія СО2 і вихід метанолу помітно зростають.

Таблиця 2. Гідрогенізація СО2 у ДМЕ

N п/п	Каталізатор	Спосіб синтезу каталізатора	T, ℃	Р, МПа	H2/CO2/N	Об'ємна швид- кість,	Продукти вність за ДМЕ,	Селе	ктивніс	гь, %	Ступінь перетво- рення	Поси- лання
						мл/г _{кат} *год	ГДМЕ/ КГ _{каї} ГОД	Mera	ДМЕ	CO	CO ₂ ,%	
1	CuO-ZnO-AbO3/y-AbO3(2/1)	Співосадження, змішування в суспензії	275	3,0	4/1/0	393		34,1	63,8	-	-	47
2	CuO-ZnO-ZrO ₂ / γ -Al ₂ O ₃ (1/2)	Співосадження/суміш	260	3.0	3/1/0	13000	71,7	20,8	8,6	70,6	18,1	48
2	CuO-ZnO-ZrO ₂ / γ -Al ₂ O ₃ -WOx-15(1/2)	Співосадження/ просочування/суміш	200	3,0	3/1/0	13000	134	16,9	15,3	67,8	18,9	
2	CuO-ZnO-Al ₂ O ₃ /γ - Al ₂ O ₃ (2/1)	C -i	275	10	2/1/0	(7)			29		27,0	49
3	CuO-ZnO-Al ₂ O ₃ / NaHZSM-5 (4/1)	Спвосадження мокра сумш	275	4,0	3/1/0	0/2			65		34	
4	CuO-ZnO-Al ₂ O ₃ -ZrO ₂ /HZSM-5 (2/1)	Співосадження/механічна суміш	250	5,0	3/1/0	6000		18,0	58,0	24	25,5	52
	CuO-ZnO-ZrO ₂ /FER (2/1)							12,8	55,7	31,5	26	50
5	CuO-ZnO-ZrO ₂ /MOR (2/1)	Співосадження на поверхні цеоліту /гібридні капсули	260	5,0	9/3/1	8800		11,2	50,8	38,0	23,2	59
	CuO-ZnO-ZrO2/MFI(2/1)							12,9	40,5	46,6	21,3	
	CuO-ZnO-Al ₂ O ₃ /SAPO-18 (2/1)								82			
6	CuO-ZnO-MnO/SAPO-18(2/1)	Співосадження/гідротермальний синтез/механічна суміш	275	3,0	3/1/0	2200			85			53
	CuO-ZnO-ZrO2/SAPO-18 (2/1)				(00200-1:1)				87			
	Haho-PdZn/TiO ₂ +Al ₂ O ₃ (1/1)	H <i>kkkk</i>					24,24	4,3	29,1	66,6	14	
7	Нано-PdZn/TiO ₂ +ZSM-5(30) - (1/1)	Паропросочення/механічна сумші	270	2,0	3/1/1	3500	30,68	5,9	32,3	61,8	11	63
	Нано-PdZn/ZSM-5(30)	Паропросочення					25,02	4,2	30,4	65,4	14	
	CuO-ZnO-Al ₂ O ₃ /HZSM-5 (9/1)	Співосадження/ гідротермальний синтез/механічна суміш гранул			20/10/2/1			57,29	40,51		58,0	
8	CuO-ZnO-Al ₂ O ₃ /HZSM-5(12/1)	Співосадження/гідротермальний синтез in situ / капсули ядро-оболонка	250	5,0	H ₂ /CO/ CO ₂ /Ar			3,41	96,59		5,59 (CO)	56
	CuO-ZnO-Al ₂ O ₃ -C _{IEEO} +HZSM-5	Співосадження в суспензії Сняю/механічна суміш з цеолітом						22	26	52	23	
9	CuO-ZnO-Al ₂ O ₃ -C _{HEED} /HZSM-5	Співосадження в суспензії//гідротермальний синтез in situ/капсули	270	3,0	3/1/0	1800		28,0	48,4	23, 6	48,3	54
	CuO-ZnO-Al2O3-C1200-CHZSM-5	Співосадж. в суспензії//гідротермальний синтез in situ/ капсули			3/1/0			36	35	29	47	
	CuO-ZnO-ZrO2(2:1:1)+SAPO-11(1/2)	Співосадження/гідро гідротермальний синтез/механічна суміш	275	3.0	3/1			22	77		9,5	
10	CuO-ZnO-ZrO2 (2:1:1)/SAPO-11, (1/2), капсула	Співосадження / гідротермальний синтез /адгезія силіказолю/адгезія цеоліту		2,0	(H ₂ /(CO ₂ +CO) CO ₂ /CO=1:2	3000		17	81		11	55
		Двошарове розташування гранул складових каталізатора в реакторі					395	13,0	25,0	62,0	18,0	
11	CuO-ZnO-ZrO2(60/30/10)/H-FER (10), (1/1)	Механічна суміш (РМ)	260	3,0	9/3/1	8,8	640	9,0	35,0	56,0	20,0	60
		Гель-оксалатне співосадження на поверхні FER (капсули)					732	12,0	40,0	48,0	22,0	
12	$C_{12}O_{1$	(020/10/ЕЕР (20) (2/1) Гель-оксалатне співосадження на поверхні частинок FER (капсули)						13	46	41	23,6	64
12	CuO-210-2102(00/30/10)/TEK (20); (2/1)	Просочення порошку FER прекурсорами каталізатора	260	5,0	9/3/1	0,0		18,5	54,5	27	6,6	04
		Гель-оксалатне співосадження на поверхні частинок FER (капсули ZZ-C)					33,12				13,5	
13	CuO-ZnO-ZrO2(60/30/10)/ HZSM-5 (30), (1/1)	2.(60/30/10)/ HZSM-5 (30), (1/1) Гранули з подрібненої суміші компонентів (ZZ-G)						11,0	36,5	49,5	10,9	65
		Двошарове розташування гранул складових каталізатора (ZZ-D)					662,4	12,4	37,2	50,4	13,8	

Таким чином, для підвищення ступеня гідрогенізації CO_2 в метанол найважливішим є синергізм оксидних компонентів каталізатора, наявність на поверхні кисневих вакансій, зменшення розміру активних центрів і підвищення зовнішньої поверхні металічної міді як основного активного центру. Важливим фактором, що впливає на активність каталізатора, є спосіб його одержання, серед цих способів привертає увагу використання темплат-агентів і комплексоутворювачів в процесі синтезу.

Гідрогенізація СО2 у диметиловий етер

Гідрування CO₂ до ДМЕ розглядається як ефективний спосіб перетворення CO₂ в цінне дизельне паливо з високим цетановим числом [43, 44]. Ефективність одностадійного процесу синтезу ДМЕ через метанол полягає в порушенні термодинамічної рівноваги синтезу метанолу (реакція 5) через поступове перетворення його в етер за реакцією (6) зі зсувом рівноваги реакції (5) вправо [45-47].

Каталізатор прямого перетворення CO₂ в ДМЕ повинен бути здатний ефективно каталізувати як синтез метанолу, так і його дегідратацію, мінімізуючи вихід CO та можливий вихід вуглеводнів і містить, як правило, мідьвмісний компонент синтезу метанолу і дегідратуючий кислотний компонент.

Класичний каталізатор конверсії синтез-газу в метанол — біфункціональний мідь-цинк-алюмооксидний каталізатор, який збагачений кислотним компонентом γ -Al₂O₃, у порівняльному аспекті було досліджено в реакціях гідрування CO₂ та CO в ДМЕ за рівних умов [47]. Зазначається, що вихід ДМЕ для суміші H₂/CO₂ не перевищує 10%, а метанолу — 5 %, в той час, як для суміші H₂/CO ці цифри відповідають значенням 60 % та 5 %, відповідно (табл. 2). Очевидно, що велика кількість води, яка утворюється за реакцією 5, блокує активні кислотні центри γ -Al₂O₃, котрі відповідають за процес дегідратації метанолу, тим самим зменшуючи виходи цільового продукту. Підвищення температури реакції сприяє утворенню вуглеводнів.

Модифікування поверхні γ -Al₂O₃ як компонента каталізатора оксидами вольфраму WO_x здійснено в роботі [48]. Досліджено вплив концентрації W на поверхні γ -Al₂O₃ і розміру пор оксиду алюмінію на активність каталізатора CuO-ZnO-ZrO₂/ γ -Al₂O₃-WO_x в процесі одностадійної конверсії CO₂ в ДМЕ і показано переваги середньо- і крупнопористої структури оксиду алюмінію (розмір пор 33 і 51 нм, відповідно), що містив 15-20 % W (моношарове покриття поверхні оксидом WO₃) (табл.2). Недоліком каталізатора виявилась досить висока селективність за CO та зменшення активності у часі.

Для підвищення конверсії CO₂ в ДМЕ найчастіше як дегідратуючий компонент замість γ-Al₂O₃ використовують цеоліти з різним типом каркасної структури, які мають вищу вологостійкість і містять на поверхні як Льюїсівські, так і Бренстедівські кислотні центри [23, 44, 49-55].

Егеña зі співр. [49] активність каталізатора CuO-ZnO-Al₂O₃/ γ -Al₂O₃ (2/1) порівнювали з CuO-ZnO-Al₂O₃/NaHZSM-5 (4/1), що містив цеоліт типу ZSM (група пентасилів), в якому іони Na⁺ частково були обмінені на іони H⁺, при різних співвідношеннях компонентів вихідної сировини H₂/CO₂ від 1/1 до 8/1. За температури 275 °C і тиску 4,0 МПа вихід і селективність за ДМЕ для цеолітвмісного каталізатора вдвічі перевищували відповідні дані для CuO-ZnO-Al₂O₃/ γ -Al₂O₃ (табл. 2). Найкращі результати отримано при співвідношенні H₂/CO₂ > 6 без утворення вуглеводнів.

Цеоліт HZSM-5 як дегідратуючий компонент каталізатора гідрогенізації СО2 в ДМЕ використовується і в багатьох інших роботах [23, 44, 50-52, 54, 56-58], а до складу Си-вмісного оксидного компоненту часто додають оксид цирконію, який позитивно зарекомендував себе в синтезі метанолу, або інші оксиди [44, 52, 53, 55]. Зокрема, синтезований методом співосадження нанокаталізатор CuO-ZnO-Al₂O₃-ZrO₂ у суміші з цеолітом HZSM-5 в співвідношенні 2/1 досліджено в прямому синтезі ДМЕ з CO₂ і H₂ в діапазоні температур 210 – 250 °C, тисків 2 – 5 МПа при швидкості подачі сировини 1000 – 10000 мл/гкат•год. [52]. Найкращий результат – конверсія CO₂ 30,9 %, вихід ДМЕ 21,2 %, вихід метанолу 5,9 % – отримано за умов: температура 250 °С, тиск 5,0 МПа, швидкість подачі сировини 1000 мл/гкат. год. (табл. 2).

Активність біфункціонального каталізатора, одним з компонентів якого є цеоліт, суттєво залежить від структурного типу обраного цеоліту, його пористості і кислотності [59–66]. Продуктивність за ДМЕ каталізаторів, які містили цеоліти з різною системою каналів типу FER (феррієрит), MOR (морденіт), MFI (пентасил), зменшувалась в ряду CuO-ZnO-ZrO₂/FER > CuO-ZnO-ZrO₂/MOR > CuO-ZnO-ZrO₂/MFI (табл. 2), що авторами [59] пояснюється зниженням однорідності розподілу оксидів на поверхні цеоліту в цьому ряду. Втім, досліджувані в [59] цеоліти мали різне значення силікатного модулю (SiO₂/Al₂O₃) і, відповідно, різну силу і концентрацію кислотних центрів на поверхні.

При порівнянні цеолітів одного типу з різним значенням силікатного модулю активність в реакції дегідратації метанолу до DME зростала зі зменшенням силікатного модулю для цеолітів типу FER від 60 до 10, а для MFI – в ряду: MFI (25) < MFI (50) < MFI (15), що пояснюється як особливостями структури відповідного цеоліту, так і співвідношенням сильних і слабких кислотних центрів на його поверхні. Зазначається роль слабких кислотних центрів за високих температур [60, 61]. В той же час в роботі [57] при дослідженні цеолітів H-MFI зі значенням силікатного модулю в діапазоні 27–127, найкращі показники щодо перетворення CO₂, виходу ДМЕ та водостійкості ка

Таблиця 3. Гідрогенізація СО2 у вуглеводні

$ \begin bar in the image in the image. The image in the image in the image in the image in the image. The image in the image. The image in the image in the image in the image in the image. The image in the image in the image in the image in the image. The image in the image in the image indown and the image in the image in the image. The image ind$		И Каталізатор					ІВИД- ^{кат -} ГОД	Селек-	*Розподі.	суміші с 6, мас.	рганіч	оганічних продуктах,			lь сння 6	Я				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N		Каталізатор Спосіб синтезу каталізатора		Р, МПа	H2/ CO2/Ar	Об'ємна п кість, мл/г	тивність за СО, %	CH4	C ₂	C3	C4	C ₅	>C5	Окси- генати	Олефіни / Параф	Crynie neperbop CO ₂ , 9	Посиланн		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	$\alpha\text{-}Fe_2O_3 \rightarrow \chi\text{-}Fe_5C_2$	Відновлення комерційних			60/2.0/		3,51	62,35	8,54 -олефіни 26,14 -парафіни			2,97					67		
$ \begin{array}{ c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		γ -Fe ₂ O ₃ $\rightarrow \theta$ -Fe ₃ C	оксидів в потоці СО за температур 350 – 450 °С	350	2,5	20	191	2,61	46,61	2,77 – олефіни, 34,60 -парафіни			16,02							
$ \frac{2}{6} \frac{Mn}{Pe} (3) (Mn/Pe = 0,05/1) }{Mn/Pe = 0,05/1} \frac{Mn}{Po} (2) (3) (3) (4) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4$		Fe ₂ O ₃	Комерційний продукт					31,9	49,2		50,	,1		0,7	-	0,31	12			
$ \frac{1}{3} = \frac{1}{3} + 1$	2	Mn/Fe ₂ O ₃ (Mn/Fe =0,05/1	Темплатний золь/гель метод	340	2,0	69/23/8	6000	7,7	29,3	63,2				3,9	3,6	0,37	30	68		
$ \begin{array}{ c c c c c c } \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Fe ₂ O ₃	Комерційний продукт (Фірма Kanto)				3/1/0 1800	33,2	60,2	22,5	11,3	3,7		2,3		0,03	14,3	14,3		
$ \begin{array}{ c c c c c } \hline & CuFe_{2O_{4}} & Haho (umi-inc) & Conisocand (or dipma sigma-Aldrich) & Output (or dipma sigma $		Cu ₂ O+Fe ₂ O ₃	Суміш оксидів		1,0 3/1/	3/1/0		28,9	57,6	22,8	12,6	4,4		2,6		0,03	15,7			
$ \frac{\text{CuFeO}_{(\text{genadoccir})}}{\text{Ma-Fe3O4}} \frac{\text{CniBocadxenna}}{\text{CniBocadxenna}} \\ \frac{\text{Na} - \text{Fe3O4}}{(\text{SiO}/\text{ALSON-551/3})} \frac{\text{CniBocadxenna}}{(\text{CniBocadxenna})} \\ \frac{320}{(\text{SiO}/\text{ALSON-561/3})} \\ \frac{\text{Na} - \text{Fe3O4}}{(\text{SiO}/\text{ALSON-561/3})} \frac{\text{CniBocadxenna}}{(\text{CniBocadxenna})} \\ \frac{320}{(\text{SiO}/\text{ALSON-561/3})} \\ \frac{\text{Na} - \text{Fe3O4}}{(\text{SiO}/\text{ALSON-561/3})} \frac{\text{CniBocadxenna}}{(\text{CniBocadxenna})} \\ \frac{320}{(\text{CniBocadxenna})} \\$	3	CuFe ₂ O ₄ – нано (шпі- нель)	Комерційний продукт (Фірма Sigma-Aldrich)	300				28,4	38,3	19,7	20,1	10,5	11,4			0,02	13,3	69		
Na - Fe3O4 Співосадження (SiO ₂ /Al2O3=160) Співосадження+цеоліт 320 3,0 3/1/0 4000 14 12 48 40 33,9 7 Na - Fe3O4 / HZSM-5=1/1 (SiO ₂ /Al2O3=160) Співосадження+цеоліт 320 3,0 3/1/0 4000 14 12 48 40 33,9 7 Na - Fe3O4 / HZSM-5=1/3 Співосадження+цеоліт S Співосадження+цеоліт 320 3,0 1/2/6/1 4000 14 12 48 40 33,9 7 Na - Fe3O4 / HZSM-5=1/3 Співосадження+цеоліт 320 3,0 1/2/6/1 4000 11/7,7 8 26 60 6(i3o-) 5,11 25,1 Na - Fe3O4 / HZSM-5=1/3 Співосадження+цеоліт 320 3,0 12/6/1 4000 17,4 9 11 21 59(i3o-) 0,02 25,8 Na - Fe3O4 / HMCM- 22=1/3 Співосадження+цеоліт 340 3,0 73/2/3 9,000 17,4 9 11 21 59(i3o-) 0,08 25,9		СиFeO2 (делафоссіт)	Співосадження/ гідротер- мальний					31,7	2,7	8,3	12,6	10,1	66,3			7,3	17,3			
$ \frac{4}{3} \frac{Na-Fe_{3}O_{4}/HZSM-5=1/1}{(SiO_{2}/Al_{2}O_{3}=160)} Cnibocaddend Hubber Hubb$		$Na - Fe_3O_4$	Співосадження	220	2.0	2/1/0	4000	14	12		48		40		40				33,9	7
$\frac{ Na - Fe_{3}O_{4} }{ Na - Fe_{3}O_{4} HSM-5=1/3 } \left(Cnibocaddenddenddenddenddenddenddenddenddendde$	4	Na-Fe ₃ O ₄ / HZSM-5=1/1 (SiO ₂ /Al ₂ O ₃ =160)	Співосадження+цеоліт	320	3,0	5/1/0	4000	14	8	18		18		74			33,5	/		
$\frac{1}{5} \frac{1}{100^{3} \text{HZSM-5} = 1/3} \left[\frac{1}{100^{3} \text{Cnibocad}_{\text{xenhs}+uconir}}}{\frac{1}{100^{3} \text{HBcta} = 1/3}} \right] \left[\frac{1}{100^{3} \text{Cnibocad}_{\text{xenhs}+uconir}}} \right] \xrightarrow{1}{30^{3}} \left[\frac{1}{10^{6}} \right] \left[\frac{1}{10^{6}} \right]$		Na - Fe ₃ O ₄ /	Співосадження					17,7	8	2	6	60	6	(ізо-)		5,11	25,1			
5 Na-Fe ₃ O ₄ / HBeta=1/3 Співосадження+цеоліт 22=1/3 320 3,0 12/6/1 4000 17,4 9 11 21 59(iзо-) 0,02 25,8 71 Na-Fe ₃ O ₄ / HMCM- 22=1/3 Співосадження+цеоліт Співосадження+цеоліт 17,1 8 10 25 57(iзо-) 0,08 25,9 71 6 Гранули з подрібненої суміші компонентів 73/24/3 9,000 64 4,5 25 70,5 10,0 75 6 In2O ₃ /HZSM-5 =2/1(нано) З40 3.0 73/24/3 9,000 64 4,5 25 70,5 10,0 75 Осадження/золь-гель ме- тод/суміш гранул 340 3.0 73/24/3 9,000 64 4,5 25 70,5 10,0 44 1,0 20,4 78,6 13,1 75		Na-Fe ₃ O ₄ / HZSM-5=1/3	Співосадження+цеоліт			12/6/1		17,3	6	16 4		44	34(i30-)			0,02	25,6			
Na-Fe3O4 / HMCM- 22=1/3 Співосадження+цеоліт Image: Chibo (Chibo (Chib	5	Na-Fe ₃ O ₄ / HBeta=1/3	Співосадження+цеоліт	320	3,0		4000	17,4	9	11		21	59(i3o-))	0,02	25,8	71		
6 Гранули з подрібненої суміші компонентів 73/24/3 9,000 42 94,5 1,5 4,0 10,5 75 6 Іп2О3/НZSM-5 =2/1(нано) Двошарове розташування гранул компонентів 340 3.0 73/24/3 9,000 64 4,5 25 70,5 10,0 10,0 10,1 10,0 <td></td> <td>Na–Fe₃O₄ / HMCM- 22=1/3</td> <td>Співосадження+цеоліт</td> <td></td> <td></td> <td></td> <td></td> <td>17,1</td> <td>8</td> <td colspan="2">10 25</td> <td>25</td> <td colspan="2">57(i3o-)</td> <td colspan="2">57(i30-)</td> <td>25,9</td> <td></td>		Na–Fe ₃ O ₄ / HMCM- 22=1/3	Співосадження+цеоліт					17,1	8	10 25		25	57(i3o-)		57(i30-)		25,9			
6 In2O3/HZSM-5 =2/1(нано) Двошарове розташування гранул компонентів 340 3.0 73/24/3 9,000 64 4,5 25 70,5 10,0 0 Осадження/золь-гель ме- тод/суміш гранул 340 3.0 73/24/3 9,000 64 4,5 25 70,5 10,0			Гранули з подрібненої суміші компонентів					42	94,5	1,5			4,0				10,5	75		
Осадження/золь-гель ме- тод/суміш гранул 44 1,0 20,4 78,6 13,1	6	In ₂ O ₃ /HZSM-5 =2/1(нано)	12O3/HZSM-5 Двошарове розташування 2/1(нано) гранул компонентів 340	3.0	73/24/3	9,000	64	4,5	4,5 25			70,5				10,0				
			Осадження/золь-гель ме- тод/суміш гранул							44	1,0		20,4			78,6			13,1	

Примітки: *Селективність (S) за сумішшю органічних продуктів: Sopr. = 100% - Sco%

талізатора CuO-ZnO-ZrO₂/H-MFI, що містив 10 % цеоліту, отримано при співвідношенні $SiO_2/Al_2O_3 = 38$.

Порівняння активності біфункціональних каталізаторів CuO-ZnO-Al₂O₃/SAPO-18 CuO-ZnO-ZrO₂/SAPO-18 та CuO-ZnO-MnO/SAPO-18 (атомне співвідношення металів: 2:1:1,5), гідруючий компонент яких містить різні оксиди (Al₂O₃, ZrO₂, MnO), а дегідратуючий – силікоалюмофосфатний цеоліт SAPO-18, в гідруванні суміпі CO₂ + CO (1/1) до ДМЕ здійснено в роботі [53]. Найкращим виявився каталізатор CuO-ZnO-ZrO₂/SAPO-18 зі співвідношенням металовмісного і цеолітного компоненту 2/1 (табл. 2), хоча вихід парафінів як бічних продуктів на каталізаторі CuO-ZnO-MnO/SAPO-18 був вдвічі нижчий, ніж на Zr-вмісному.

Як альтернативу оксидній складовій каталізатора пропонується до складу біфункціонального каталізатора замість оксидів вводити наночастинки сплаву PdZn, що є активними каталізаторами гідрування СО2, до метанолу [62, 63]. Наночастинки PdZn (Pd/Zn=1моль/5моль) наносили методом паропросочування на TiO₂ з подальшим змішуванням PdZn/TiO₂ (5% Pd) з кислотним компонентом (Al₂O₃ або HZSM-5 (30), або безпосередньо на цеоліт HZSM-5 [63]. Какаталізатора талітичні показники змішаного PdZn/TiO2-ZSM-5 перевершували відповідні дані для PdZn/ZSM-5 каталізаторів (табл.2), і ця різниця приписана блокуванню відповідальних за дегідратацію метанолу кислотних центрів Бренстеда з одночасним зниженням питомої поверхні цеоліту, коли PdZn наноситься безпосередньо на його поверхню.

Спосіб приготування каталізаторів прямого синтезу ДМЕ з CO₂ і H₂, як і каталізаторів синтезу метанолу, суттєво впливає на ефективність процесу в цілому. Серед них привертає увагу одержання капсульного каталізатора (серцевина-оболонка) в якому серцевиною є відновлювальна, а оболонкою – кислотна складова біфункціонального каталізатора або навпаки [53-58]. Одними з перших таку методику запропонували Yang зі співр. [56] при дослідженні процесу одержання ДМЕ із синтез-газу. Ядро каталізатора отримували шляхом оберненого оксалатного співосадження етанольних розчинів солей-прекурсорів каталізатора CuO-ZnO-Al₂O₃, розміщували в середовищі прекурсорів цеоліту і в процесі гідротермального синтезу in-situ формували зовнішню цеолітну оболонку за умов обертання реактора синтезу. Розмір ядра такого каталізатора становив 1 мм, а оболонки – 1 мкм. Були порівняні активності капсульного каталізатора та такого, який був підготовлений методом механічного змішування вихідний оксидів аналогічного складу з точки зору селективності процесу за ДМЕ та загальної конверсії СО. Показано, що в присутності капсульного каталізатора селективність за ДМЕ майже в 2,5 рази вище, і становила 96,59 %, проте, загальна конверсія СО була на порядок нижчою (табл. 2). Такий результат пояснюється [56] ймовірною руйнацією цеолітної оболонки або комплексоутворенням металів оксидної складової каталізатора з компонентами прекурсору цеоліту в процесі синтезу. Слід зазначити, що порівняння каталітичної активності композицій каталізатора за способом приготування, здійснене в роботі [56], не є коректним, оскільки цеолітна складова в них суттєво розрізнялась значенням силікатного модулю (співвідношення SiO₂/Al₂O₃ дорівнювало 32 для капсульного і 163 для сумішевого каталізатора).

Liu зі співр. [54] ядро капсульного каталізатора одержували шляхом співосадження солей-прекурсорів нано-CuO-ZnO-Al₂O₃ на поверхні нанокарбонових сфер в суспензії останніх. Цеолітна оболонка на поверхні CuO-ZnO-Al₂O₃/Снано формувалась in-situ в процесі гідротермального синтезу цеоліту із золю прекурсорів з обертанням або без обертання реактора. Отриманий після прожарювання зразків капсульний каталізатор мав високі показники конверсії СО2 з утворенням ДМЕ і метанолу як основних продуктів, гальмував подальшу дегідратацію ДМЕ до вуглеводнів і значно перевищив результати, отримані для механічної суміші гранул синтезованого окремо нанокаталізатора СиО-ZnO-Al₂O₃/Снано з цеолітом HZSM-5 (табл. 2). Механізм реакції CO2 і H2 розглядався як дифузія реагентів крізь цеолітну мембрану на поверхню CuO -ZnO – Al₂O₃, утворення метанолу, десорбція і дифузія його в цеолітну мембрану (оболонку), на кислотних центрах якої відбувалась дегідратація метанолу з утворенням ДМЕ [54].

Інший спосіб капсулювання металоксидного каталізатора – диспергування його в середовищі силіказолю з отриманням на поверхні тонкого шару останнього і подальшою адгезією на шарі силіказолю порошку цеоліту SAPO-11 – показав менші переваги (табл.2) капсульного способу приготування біфункціонального каталізатора (24-26 %) над фізичною сумішшю компонентів [55, 66].

Ще в меншій мірі властивості гібридного каталізатора впливають на перебіг гідрування СО2 в ДМЕ, якщо зовнішньою оболонкою капсули є металоксидний компонент каталізатора, отриманий в процесі оберненого гель-оксалатного співосадження етанольних розчинів солей-прекурсорів на поверхні дрібнодисперсних частинок цеоліту [57, 60, 64, 65]. В присутності капсульного каталізатора CuO-ZnO-ZrO2/H-FER(10) (співвідношення 1/1) з зовнішньою металоксидною оболонкою за рівних умов експерименту конверсія СО₂ і селективність за ДМЕ лише на 10 %, а продуктивність за ДМЕ – на 13 % перевищували відповідні дані для рівномірної механічної суміші гранул окремо синтезованих складових біфункціонального каталізатора CuO-ZnO-ZrO2 і H-FER(10); в той же час пошарове розташування гранул складових біфункціонального каталізатора суттєво зменшувало його активність в синтезі ДМЕ (табл. 2) [60]. Методика одержання капсульного каталізатора з цеолітовим яд ром виявилась більш ефективною, ніж методика простого просочення цеоліту відповідними солямипрекурсорами (каталізатор CuO-ZnO-ZrO₂/H-FER(20), співвідношення 2/1) [64].

На відміну від досліджень [57, 60, 64], в роботі Воnura зі співр. [65], навпаки, каталітична активність гібридного (капсульного) каталізатора CuO-ZnO-ZrO₂/HZSM-5(30) складу 1/1 з металоксидною зовнішньою оболонкою, одержаного шляхом зворотного співосадження металооксидних компонентів на поверхні цеоліту у водній дисперсії, виявилась нижчою за біфункціональні системи, отримані при пошаровому розташуванні гранул обох компонентів в реакторі, використанні гранул попередньо подрібненої і сформованої суміші компонентів та однорідної суміші окремо спресованих і гранульованих компонентів (табл. 2). Це автори [65] пояснюють блокуванням активних центрів цеоліту в процесі одержання гібридного каталізатора.

Іонним обміном і частковим блокуванням частинками металоксидного компоненту мікропор цеоліту, що впливає на його кислотність, з інструментальним підтвердженням пояснюється і невисока активність в конверсії синтез-газу в ДМЕ каталізатора, сформованого з ретельно подрібненої, а потім гранульованої суміші сухих компонентів або отриманих з водної суспензії, у порівнянні з простою сумішшю окремо сформованих гранул металоксидного CuO-ZnO-Al₂O₃ і цеолітного (HZSM-5) каталізаторів [58].

Таким чином, активність біфункціонального каталізатора синтезу ДМЕ з CO2 і H2 залежить не лише від його компонентного складу, а і від методики його приготування. В процесі останнього слід приділяти увагу збереженню пористої структури і активних центрів на поверхні каталізатора. Ідеальний біфункціональний каталізатор повинен містити оптимальне співвідношення металоксидного і кислотного (мезопористий цеоліт) компонентів зі збалансованою концентрацією кислотних центрів слабкої і середньої сили, рівномірно розподілених на поверхні. Подальші дослідження мають бути спрямовані в бік зниження утворення побічних продуктів (вуглеводнів), яке зростає з температурою, підвищення стабільності у часі й використання мембранних систем для вилучення надлишку води з зони реакції.

Гідрогенізація СО2 у вуглеводні

Перетворення CO₂ у вуглеводні (бензини) може здійснюватись за класичною реакцією Фішера-Тропша (ФТ) через оксид вуглецю, що утворюється в оберненій реакції водяного газу (1) або через перетворення проміжних продуктів – метанолу та ДМЕ в легкі олефіни за реакціями (6-8) з подальшою їх олігомеризацією, гідрогенізацією, ізомеризацією [1-12]. В ФТ процесі Fe-вмісні каталізатори, через їх активність в реакції водяного газу та селективність до вуглеводнів С²⁺, мають переваги перед типовими Со-, Ni та Ru- каталізаторами.

Zang зі співр. досліджували гідрування CO₂ в присутності оксидів заліза α-Fe₂O₃ і γ-Fe₂O₃ [67]. Комбінацією різних методів встановлено, що в процесі активації каталізатора і гідрування СО2 має місце перетворення оксидів заліза: α -Fe₂O₃ (γ -Fe₂O₃) $\rightarrow \alpha$ -Fe₃O₄ (γ - Fe_3O_4) $\rightarrow \alpha$ -Fe (γ -Fe) $\rightarrow \gamma$ -Fe₅C₂ (θ -Fe₃C). Утворені карбіди заліза показали високу активність, хоча *χ*-Fe₅C₂, утворений з α-Fe₂O₃, виявився більш селективним до нижчих олефінів, в той час, як карбід θ-Fe₃C, утворений з у-Fe₂O₃ – до вищих (C₅₊) (табл. 3). Дійсними каталізаторами реакції в даному випадку є не оксиди, а карбіди заліза. Недоліком процесу є висока селективність за метаном. Зниження виходу CH₄ і CO як бічних продуктів отримано на мезопористому нанокаталізаторі 0,05 Mn/Fe на основі оксиду заліза Fe₂O₃, модифікованому Mn, який був синтезований золь/гель методом в присутності темплату [68] (табл. 3).

Сhoi зi співр. порівнювали каталітичну активність в реакції гідрування CO₂ Fe/Cu-вмісних каталізаторів, одержаних різним способом [69]: оксид Fe₂O₃, фізичну суміш оксидів Fe₂O₃ + Cu₂O, наноструктуровану шпінель CuFe₂O₄ (комерційний продукт) і делафоссіт CuFeO₂, синтезований авторами з солей-прекурсорів шляхом комбінації співосадження з гідротермальним методом. Останній показав найкращий результат: високу селективність за вуглеводнями з C \geq 5 з нівелюванням утворення метану (табл. 3). Активним каталізатором процесу, як зазначається [69], є карбід Хегта χ -Fe₅C₂, утворений карбонізацією оксидів заліза.

Для підвищення селективності до вутлеводнів C_{5+} до Fe-вмісних каталізаторів додаються невеликі кількості інших металів - промоторів: Mn, Cu, La, Zr, Cr, Mo, Ta, Na, K, Rb, та використовуються оксиди металів (Al₂O₃, TiO₂) як носії каталізатора. Було показано [70], що нанесені на TiO₂ активні компоненти на основі Fe з добавкою Cu i K, модифіковані деякими іншими металами (La, Zn, Zr, Mn) дозволяють досягти високої селективності за вуглеводнями C₅–C₁₅ (30-40 %) при низькій селективності за метаном (1-2 %) та відносно високій конверсії CO₂ (25–30 %).

Як і в дослідженнях гідрогенізації СО₂ в ДМЕ, при синтезі вуглеводнів широко використовують бі- і поліфункціональні каталізатори, що містять цеоліти. Високу ефективність в прямому перетворенні СО₂ у вуглеводні бензинового діапазону ($\geq C_5$) отримано на поліфункціональному каталізаторі Na – Fe₃O₄/Цеоліт [7, 71]. Каталізатор охарактеризований наявністю трьох типів активних центрів, які каталізують різні реакції: окисно-відновні – карбід заліза Fe₃C₄ (здійснення оберненої реакції водяного газу); синтез олефінів – Fe₅C₂; олігомеризація, ізомеризація та ароматизація вуглеводнів – кислотні центри цеоліту (рис. 2).

Рис. 2. Схема реакції гідрування CO₂ у вуглеводні на багатофункціональному каталізаторі Na – Fe₃O₄/Цеоліт за [7].

У складі багатофункціонального каталізатора Na -Fe₃O₄/цеоліт було досліджено цеоліти з різною системою каналів і силікатним модулем: НУ (SiO₂/Al₂O₃ = 5), HMOR (SiO₂/Al₂O₃ = 20), HBEA (SiO₂/Al₂O₃ = 25), HZSM-23 HMCM-22 (SiO_2/Al_2O_3) 30). (SiO₂/Al₂O₃=80), HZSM-5 (SiO₂/Al₂O₃=27, 160, 300) [7]. Було встановлено, що тип і структура пор цеоліту не впливає на конверсію СО2 в СО та селективність за СО, які визначаються першим компонентом - Na-Fe₃O₄, але суттєво впливає на розподіл вуглеводневих продуктів реакції. Виявилось, що серед цеолітів, канали яких мають форму десятичленних кілець, селективність за вуглеводнями С5-С11 зменшується зі зміною системи каналів цеолітного каркасу в ряду: HZSM-5 (тримірна) - HMCM-22 (двомірна) - HZSM-23 (одномірна). Серед досліджених цеолітів HZSM-5 з різним силікатним модулем найкращим за селективністю до вуглеводнів C5-C11 виявився HZSM-5 з тримірною системою пор і середньою кислотністю (SiO₂/Al₂O₃=160) [7] (табл. 3). Визначено вплив різних способів комбінації компонентів каталізатора Na -Fe₃O₄/HZSM-5 (160) на вихід і розподіл вуглеводнів в продуктах гідрування: розміщення гранульованих компонентів каталізатора ізольованими шарами; змішування гранульованих компонентів струшуванням їх у колбі; ретельне розтирання суміші компонентів в агатовій ступці. Найвища селективність до вуглеводнів ≥ С₅ (до 74 %) і найнижча – до метану – отримана при розміщенні каталізатора за другим способом, а вища селективність за ізопарафінами - першим способом [7]. Порівняння каталізаторів складу Na - Fe₃O₄/цеоліт з близьким силікатним модулем цеолітних компонентів H-MCM-22 (28), H-beta (24) і H-ZSM-5 (25) з пошаровим розміщенням Na – Fe₃O₄ і цеоліту в реакторі, здійснено тими ж авторами в роботі [71] (табл. 3). Було встановлено, що зростання селективності за ізопарафінами С5+ відповідає зменшенню щільності розподілу і сили кислотних центрів і підвищенню об'єму мезопор. Останнє сприяє пришвидшенню утворення коксу на кислотних центрах каталізаторів, що містять цеоліти НМСМ-22 та НВеtа. Регенерація каталізаторів за температури 500 °С протягом 3-х

годин в атмосфері повітря дозволила відновити їх активність [71].

Вплив різних металів-промоторів і типу цеоліту (HY, HM, HZSM) на синтез ізоалканів шляхом гідрогенізації CO₂ у присутності композитних каталізаторів Fe–Zn–M/ Цеоліт (М-метал-промотор: Cr, Mn, Zr, Al, La) досліджено в [72]. Відзначається роль структури і кислотності, зокрема, наявності середніх і сильних центрів на поверхні цеоліту, в утворенні ізомерних вуглеводнів. Найкращим металом-промотором з досліджених виявився Zr.

В згаданих вище публікаціях [7, 67-72] передбачається, що гідрогенізація CO₂ у вуглеводні відбувається через утворений в оберненій реакції водяного газу CO з подальшим перетворенням його за реакцією ФТ (рис. 2).

Інпий шлях конверсії CO₂ на цеолітвмісних каталізаторах розглядається через утворення метанолу як проміжного продукту з перетворенням у вуглеводні в порах цеоліту [73-77]. Gao зі співр. [75] в присутності каталізатора $In_2O_3/HZSM$ -5, що містив In_2O_3 як метанолоутворюючий компонент та цеоліт, на якому метанол конвертувався у вуглеводні, спостерігали високу селективність за вуглеводнями C₅₊, переважно ізопарафінів, та практичну відсутність в продуктах реакції метану при конверсії CO₂ 13,1 % та селективності за CO 44 %. Автори [75] вказують на переваги використання рівномірної суміші окремо гранульованих компонентів каталізатора у порівнянні з пошаровим їх розташуванням і використанням гранул з подрібненої суміші при одержанні вуглеводнів C₅₊ (табл.3).

В присутності каталізатора (In_2O_3/ZrO_2)-SAPO-34 спостерігався зсув реакції у бік переважного утворення олефінів C₂-C₄: вміст останніх у вуглеводневій фракції становив близько 80 % при конверсії CO₂ до 35 % і селективності за CO 55–85 % [76, 77]. Відзначається стабільність роботи каталізатора у часі протягом 150 годин, хоча в більшості опублікованих робіт наголошується, що основним недоліком використання цеолітвмісних каталізаторів в гідруванні CO₂ до вуглеводнів за високих температур і тисків є коксування, яке знижує їх активність і потребує періодичної регенерації каталізатора. Недоліком процесів одержання вуглеводнів з CO₂ є також необхідність великого вмісту водню у вихідній сировині.

Гідрогенізація СО2в етанол

Гідрогенізація CO₂ в спирти з C $\geq 2 \in$ ще більшою проблемою, ніж у вуглеводні з C ≥ 2 . Як компоненти каталізаторів в процесах одержання етанолу найчастіше використовують благородні метали (Pt, Pd, Rh, Ru, Au) через їх здатність до утворення сполучень C – C [1, 4, 78-81]. Деякі результати гідрогенізації CO₂ в етанол, отримані різними дослідниками, наведено в табл. 4.

Таблиця 4. Гідрогенізація СО2 в етанол

N п/	Каталізатор	Каталізатор Спосіб синтезу каталіза-		Р, МПа	H ₂ / CO ₂ / N ₂	Об'ємна швид- кість, год	ктивність 50Н, *год				Ступінь перет- ворення СО2	илання			
п		ropu			1.2	I	Проду 3а С2Н г/кг _{кат}	СО	CH4	CxHy (C>1)	CH ₃ OH	C ₂ H ₅ OH	Спир ти С>С2	%	Пос
	5 % Rh/SiO ₂							0,1	99,7		0,2	0,0		12,4	
1	5 % Rh-Li/SiO ₂ , (Rh/Li~1/1)	Просочення	240	5.0	3/1/0	6000		15,5	63,5		5,2	15,5		7	78
	5 % Rh/SiO ₂							89,3	3,3		6,2	1,2		12,7	
2	5 % Rh-Fe/SiO ₂ (Rh/Fe ~1/1)	Просочення	260	5,0	3/1/0	6000		27,5	27,6		28,5	16,2		25,1	79
2	2 % Rh/MCM-41	Прозонания	250	2.0	2/1/1	6000	1,7	63,16	31,36		0,57	4,91		2,3	80
3	2%Rh-0.3VOx/MCM-41	Просочення	250	3,0	3/1/1	6000	47,9	18,23	43,81		16,10	21,86		12,1	80
	Ga-Fe-Cu-Al-K ~ 0,16/1/0,03/2/0,7 + Pd-Cu-Zn-Al-K ~ 0,03/1/1/1/0,1	Золь-гель метод /співосадження/просоченн я/ суміш	220		2/1/0	20000	476**				5,18	17,0		54,5	81
4	Fe-Cu-Al-K ~ /1/0,03/2/0,7 + Cu-Zn-Al-K ~ 1/1/1/0,1 (1/2)	Золь-гель метод /співосадження/суміш	330	8,0	3/1/0	50000	874**	26,6	51,5		4,97	14,8		31,1	
	Co/La ₂ O ₃	Відновлення перовскіто-							97,8*	1,7*	0,38*	0,12*		30,4	82
5	Co/La ₂ O ₃ -La ₄ Ga ₂ O ₉ Co/Ga=7/3	подібних оксидів LaCo _{1-x} Ga _x O ₃	240	3,0	3/1/0	3000			23,1*	2,2*	8,89*	65,81*		9,8	02
6	NaCo/SiO ₂							29,05	38,73	22,67	1,19	5,99	2,37	18,82	
0	NaCo/Si ₃ N ₄	Просочення	250	5,0	3/1/0	4000		39,16	31.26	20,39	1,06	5,73	2,40	17,75	83
	NaCo/Al ₂ O ₃	D.						13,96	62,47	23,56	0,005	0,004	0,001	48,47	
	Mo ₂ C	В1дновлення (NH4)6M07O24*4H2O						4,9	17	9,1	53	16		10	
_	Pd / Mo ₂ C	-	200	4.0	2 /1 /0			9,6	7,6	3,7	68	11		10	0.6
1	Co / Mo ₂ C	Просоценци	200	4,0	3/1/0			9,5 8.6	9,5	10,0	46 63	25		10	86
		просочення						6.8	9,0 8.1	4,0	58	14		10	
	Fe / Mo ₂ C							0,0	0,1	,.	20	10		10	

В роботах [78, 79] досліджено реакцію гідрування СО₂ в присутності каталізаторів Rh/SiO₂ (5 % Rh), промотованих металами (M) різної валентності (28 найменувань) при атомному співвідношенні металів M/ Rh ~1/1. Відзначено практично повну конверсію CO₂ в метан для базового каталізатора Rh/SiO₂ і найвищу конверсію в етанол для каталізатора, промотованого Li (селективность за етанолом досягла 15,5 % при конверсії CO₂ 7,0 % зі зниженням селективності за метаном від 99,7 % (Rh/SiO₂) до 63,5 % (Rh-Li/SiO₂) за оптимальних умов експерименту [78]. Селективність за етанолом 16,2 %, а за метаном до 27,6 % при конверсії CO₂ 25,1 % отримано для промотованого Fe каталізатора Rh-Fe/SiO₂ [79].

Вплив промоторів – оксидів металів – на активність Rh-вмісного каталізатора (2 % Rh) на основі мезопористого цеоліту MCM-41 (Rh-MO_x/MCM-41, де MO_x=VO_x, WO_x, FeO_x, MnOx, CeO_x та NbO_x) в гідрогенізації CO₂ розглядається в [80]. Найкращим промотором серед досліджуваних виявився оксид VOx (0,3 %, табл.4), що пояснюється синергізмом високої дисперсії Rh на поверхні і утворенням активних центрів на міжфазній межі VO_x/Rh.

У каталітичній конверсії СО₂ до етанолу авторами [81] було випробувано комбінований каталізатор, що поєднує складові з різними функціями: для відновлення СО₂ до СО – нанесений на силікатний носій Rhкаталізатор (0,5 % Rh); для утворення С–С зв'язків – модифікований каталізатор Фішера-Тропша на основі Fe (Fe-Cu-Al-K); для утворення гідроксильних груп – модифікований каталізатор синтезу метанолу на основі міді (Cu-Zn-Al-K). Досліджено також вплив добавки Pd/Al₂O₃ як такої, що підсилює спіловер водню (температура 330 °С, тиск 8,0 МПа). Найкращий результат було отримано на змішаному каталізаторі, що не містив коштовних металів (табл.4).

Нещодавно з'явились інші публікації з конверсії СО2 в етанол на каталізаторах, що не містять коштовних металів [82-85]. Зокрема, запропоновано каталізатор Co/La₂O₃-La₄Ga₂O₉, отриманий шляхом відновлення перовскіту LaCo₁-хGa_xO₃, синтезованого шляхом комплексоутворення солей-прекурсорів з цитриновою кислотою, прожарювання отриманих комплексів і відновлення композиції оксидів [82]. Дослідження активності композитного каталізатора в гідруванні СО2 у порівнянні з LaCoO₃ (температура 240°С, тиск 3,0 MPa) показало, що введений до складу каталізатора Ga інгібує утворення СН₄ і промотує утворення етанолу. Оптимальні результати з конверсією СО2 9,8 % і селективністю за етанолом 65,81 % отримано при атомному співвідношенні Со/Ga~7/3. Відзначається синергетичний вклад поверхневих атомів і йонів Со в активність каталізатора Со / La₂O₃-La₄Ga₂O₉ в реакції гідрування СО2 в етанол.

Со - каталізатори, промотовані Na і нанесені на різні носії (Al₂O₃, ZnO, SiO₂, AC- активоване вугілля,

Si₃N₄, TiO₂) в концентрації метала 20 % і 2 %, відповідно, досліджено в прямій гідрогенізації CO₂ в роботі [83]. Відзначено суттєвий вплив носія на стан каталізатора на поверхні: якщо на Al₂O₃, ZnO, AC та TiO₂ оксиди кобальту в процесі реакції відновлюються до Co⁰, то на поверхні SiO₂ і Si₃N₄ утворюється карбід Co₂C, який сприяє селективності за оксигенатами (табл. 4), постійно регенерується оксидом вуглецю, що утворюється в реакції, завдяки чому каталізатор є стабільним у часі протягом 300 год. Селективність за метаном і вуглеводнями на Co₂C (носії SiO₂ і Si₃N₄) зменшилась у ~ 2 рази, а за спиртами – зросла на 2-3 порядки у порівнянні з іншими носіями, хоча вихід оксигенатів, в тому числі етилового спирту, за досліджуваних умов був невисокий (табл. 4).

Викладений вище матеріал стосується парофазних процесів, що здійснюються у проточному реакторі. В ряді інших робіт гідрогенізація СО2 в етанол досліджувалась в статичних умовах в замкненому реакторі – автоклаві – у присутності рідкого розчинника (вода, N,N-метилпірролідон, тетрагідрофуран, 1,4діоксан, циклогексан, декан, диметилформамід) [84-89]. Показано, що нанорозмірні каталізатори проявляють високу каталітичну активність по відношенню до синтезу етанолу з діоксиду вуглецю за різних умов реакції. Так, неочікувано високу селективність за етанолом отримано на кобальтових нанокаталізаторах на основі шаруватих подвійних гідроксидів Co-Al, синтезованих методом співосадження з сечовиною з подальшим прожарюванням і відновленням за температур 300-650 °C [84]. На відміну від комерційного каталізатора Со₃О₄, який показав селективність за етанолом лише 25,8 %, на кобальтових нанокаталізаторах оптимального склалу в присутності води як розчинника (10 % від маси каталізатора) при 140 °С і 4,0 МПа така селективність становила 92,1 %, а метану і вищих вуглеводнів зафіксовано не було. Шляхом дослідження активності каталізатора і стану його поверхні встановлено, що за оптимальної температури відновлення каталізатора на його поверхні виникає оптимальне співвідношення фаз металічного і окисненого кобальту (Со-Со, Со-Ох), яке і забезпечує ефективне гідрування СО2. Середній розмір частинок Со, диспергованих на аморфному носії Al₂O₃, становив 4,6 нм. Висока селективність каталізатора (CoAlO_x-600, де 600 – температура прожарювання) до етанолу пояснюється високою відновлюваністю поверхні оксидів, що підвищує гідрогенізуючу активність каталізатора з утворенням етанолу через ацетильний радикал [84].

Активність Co-Al-оксидних каталізаторів підвищується модифікуванням їх оксидом нікелю: запропонований в [85] каталізатор Co_{0,52}Ni_{0,48}AlO_x при гідруванні CO₂ при 200 °C протягом 12 год мав продуктивність за етанолом 15,8 ммоль/г_{кат} з селективністю 85,7 %, що навіть перевершувало показники Рd-вмісного каталізатора відповідного складу. Високу активність в реакції гідрогенізації CO₂ за відносно низьких температур (135–200 °C) в 1,4діоксані у порівнянні з Pd-вмісним каталізатором отримано на каталізаторах M/Mo₂C (M = Co, Fe, Cu, Pd, нанесені на карбід молібдену) [86]. Отримані результати показали, що при 135 °C основним продуктом синтезу був метанол з домішками метану, в той час, як при 200 °C в продуктах реакції з'являється етанол і вуглеводні з C \geq C₂. Конверсія CO₂ в етанол і вуглеводні з C \geq C₂ зростала на Co- і Fe – модифікованих каталізаторах. Найвищу селективність за етанолом отримано на каталізаторі Co/Mo₂C (табл. 4).

Високу активність в гідруванні СО2 до етанолу за статичних умов показав нанокластерний каталізатор Au/TiO2 в присутності диметилформаміду (ДМФА) [87]. Досліджено роль носія каталізатора (ТіО₂ різних поліморфних модифікацій, ZrO₂, Al₂O₃, Co₃O₄). Найкращим носієм в цьому дослідженні виявився кристалічний TiO₂ – анатаз, що характеризується великою кількістю поверхневих кисневих вакансій, які, на думку авторів [87], сприяють підвищенню взаємодії метал-носій, покращенню адсорбційних властивостей нанесеного каталізатора і зниженню активаційного бар'єру для молекул СО2. Методом скануючої електронної мікроскопії встановлено розмір наночасток Аи на поверхні (1,0 ± 0,1 нм). Активність каталізатора Au/α-TiO₂ зростала зі зменшенням ступеня покриття поверхні, і при значенні останнього 0,4 мас.% селективність за етанолом становила > 99%. Така активність каталізатора Au/α-TiO₂ втричі перевищувала активність комерційного зразка Au/TiO2 з 1 % Au. Роль розчинника (диметилформаміду), як зазначено в роботі, полягала в покращенні абсорбції молекул і транспорті їх між поверхневими дефектами TiO₂ і атомами Au в процесі гідрування. Значно гіршу активність в гідруванні СО2, ніж нано-Аи, за рівних умов і в присутності розчинника ДМФА показали метали платинової групи Pt, Pd, Ir i Rh.

В роботі [88] низьку конверсію СО2 в етанол, у тому числі в присутності металів платинової групи, пояснюють невпорядкованістю структури каталізатора. Наголошується, що упорядковані наноструктурні каталізатори з сильною взаємодією між компонентами спроможні підвищити ефективність процесу. Методом співосадження з розчинів органічних солей металів було синтезовано монодисперсні Рd-Си наночастинки сферичної форми з середнім діаметром 6,5 ±1 нм, які були нанесені на різні носії: SiO₂, CeO₂, Al₂O₃, P25 (склад останнього в статті [88] не розшифровується) і досліджені в реакції гідрування СО2. Дослідження проводили в статичних умовах в присутності води в залежності від ступеня покриття поверхні носія і атомного співвідношення Pd/Cu у порівнянні з комерційним каталізатором, який містить 10 %, мас. Pd на активованому вугіллі. За температури 200 °С під тиском 3,2 МПа на нанокаталізаторі складу Pd₂Cu(нано)/P25 з

вмістом активного компоненту на носії 1,23 %, селективність за етанолом становила 92 %. Активність комерційного каталізатора 10 % Pd/C, маса нанесеного Pd в якому була на порядок вищою, за тих самих умов була майже такою ж, проте він швидше втрачав свою активність з часом.

Каталітична активність нанесених на оксид кобальту Co₃O₄ металів платинової групи (Pt, Pd, Rh, Ru) в реакції одержання спиртів C2+ з CO2 і H2 за температури 200 °С під тиском 8,0 МПа порівнюється в роботі [89]. За досліджуваних умов конверсія СО₂ в спирти мала місце лише у присутності органічних розчинників та/або води. Вода розглядається як додаткове джерело водню на поверхні каталізатора. Показано її вплив на кінетику і механізм реакції утворення спиртів С2+, який, на відміну від [84-86], розглядається через утворення метанолу як інтермедіату з подальшою його гомологізацією. Зазначається, що утворення суміші спиртів з C ≥ 2 спричиняє зниження селективності за етанолом. Найкращий результат при 200 °C отримано на каталізаторі 1% Рt/Со₃О₄ в присутності розчинника Н₂O/1,3-диметил-2-імідазолідинон (співвідношення 15/85). Підкреслюється роль нанорозмірності частинок Pt (2-6 нм), рівномірно розподілених на поверхні каталізатора, в активації реакції гідрогенізації СО2.

Таким чином, хоча пряме гідрування CO_2 до етанолу є одним із перспективних шляхів трансформації CO_2 і може розглядатися як альтернатива синтезу етанолу через гідратацію етилену, основними проблемами залишаються жорсткі умови синтезу, висока енергія активації діоксиду вуглецю, а також висока селективність за вуглеводнями, зокрема, за метаном. З наведеного короткого огляду випливає доцільність пошуку нових ефективних нанорозмірних каталізаторів синтезу етанолу, що не містять дорогоцінних металів.

References

1. Centi G., Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. *Catalysis Today*. 2009. V.148. pp. 191-205.

2. Leonzio G. State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. *Journal of CO₂ Utilization*. 2018. \mathbb{N} 27. pp. 326-354.

3. Olajire A.A. Recent progress on the nanoparticlesassisted greenhouse carbon dioxide conversion processes. *Journal of CO*² Utilization. 2018. № 24. pp. 522-547.

4. Zhludenko M., Dyachenko A., Bieda O., Gaidai S., Filonenko M., Ischenko O. Structure and Catalytic Properties of Co-Fe Systems in the Reaction of CO₂ Methanation. *Acta Physica Polonica A*. 2018. 133 (4). pp. 1084-1087.

5. Schakel W., Oreggioni G., Singh B., Strømman A, Ramírez A. Assessing the techno-environmental performance of CO_2 utilization via dry reforming of methane for

the production of dimethyl ether. Journal of CO₂ Utilization. 2016. V. 16. pp. 138-149.

6. Yoshihara J., Campbell CT. Methanol Synthesis and Reverse Water Gas Shift Kinetics over Cu (110). Model Catalysts Structural Sensitivity. *Journal of Catalysis*. 1996. V.161. pp. 776-782.

7. Wei J., Ge Q., Yao R. Wen Z., Fang C., Guo L., Xu H., Sun J. Directly converting CO₂ into a gasoline fuel. *Nature Communications*. 2017. V. 8. pp. 1-8.

8. Zhang L., Wang H., Yang C., Li X, Sun J., Wang H., Gao P., Sun Y. The rare earth elements modified FeK/Al₂O₃ catalysts for direct CO₂ hydrogenation to liquid hydrocarbons. *Catalysis Today*. 2019.

9. Yang, H., Zhang, C., Gao, P., Wang, H., Li, X., Zhong, L., Weiab W., Sun, Y.. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. *Catalysis Science & Technology*. 2017. 7(20). 4580-4598.

10. Meshkini Far R., Ishchenko O.V., Dyachenko A.G., Bieda O., Gaidai S., Lisnyak V. CO₂ hydrogenation into CH₄ over Ni–Fe catalysts. *Functional Materials Letters*. 2018. 11(3). 1850057. 1-6.

11. Meiri N., Radus R., Herskowitz M. Simulation of novel process of CO₂ conversion to liquid fuels. *Journal of CO₂ Utilization*. 2017. V.17. pp. 284-289.

12. Kondratenko E.V., Mul G., Baltrusaitis J. Larrazábal, G. O. Pérez-Ramírez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. *Energy & environmental science*. 2013. V.6. pp. 3112-3135.

13. Behrens M., Studt F., Kasatkin I., Kühl S., Hävecker M., Abild-Pedersen F., Zander S., Girgsdies F., Kurr P., Kniep BL., Tovar M., Fischer RW., Nørskov JK., Schlögl R. The active site of methanol synthesis over Cu/ZnO/Al₂O₃ industrial catalysts. *Science*. 2012. V. 336. pp. 893-897.

14. Berg, R., Prieto G., Korpershoek G., Wal L.I., Bunningen A.J., Lægsgaard-Jørgensen S., Jongh P.E., Jong K.P. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. *Nature Communication*, 2016, V. 7, id. 13057.

15. Kattel S., Ramírez P.J., Chen J.G., Rodriguez J.A., Liu P. Active sites for CO_2 hydrogenation to methanol on Cu/ZnO catalysts. *Science*. 2017. V. 355 (6331). pp.1296-1299.

16. Tisseraud C., Comminges C., Pronier S., Pouilloux Y., Valant A.L. The Cu–ZnO synergy in methanol synthesis. Part 3: Impact of the composition of a selective Cu@ZnOx core–shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. *Journal of Catalysis*. 2016. V. 343. pp. 106-114.

17. Khimach N.Yu., Polunkin Ye.V., Mel'nykova S.L., Kolomys O.F. Mekhanokhimichna modyfikatsiya mid'-tsynk-alyumooksydnoho katalizatora syntezu metanolu. *Voprosy khymyy y khymycheskoy tekhnolohyy*. 2016. P. 78-82 [In Ukrainian]. 18. Wang Y., Kattel S., Gao W., Li K, Liu P., Chen J.G., Wang H. Exploring the ternary interactions in Cu– ZnO–ZrO₂ catalysts for efficient CO₂ hydrogenation to methanol. *Nature Communications*. 2019. V.10, id. 1166.

19. Khimach N. Obtaining of methanol by conversion of synthesis gas under mechanochemical activation of catalyst.– Qualifying scientific work as a manuscript. Thesis for a candidate's degree (PhD) in chemical science on speciality 02.00.13 "Petrochemistry and coal chemistry". – V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, 2017 [in Ukrainian].

20. Khimach N.Yu., Polunkin Ye.V., Filonenko M.M., Mel'nykova S.L. Aktyvatsiya katalizatora syntezu metanolu shlyakhom mekhanichnoyi diyi. *Dopovidi Akademii Nauk*. 2016. № 3. P.86-92. [In Ukrainian]

21. Huang C., Wen J., Sun Yu. Zhang M, Bao Yu., Zhang Yu, Liang L., Fua M., Wu Ju., Ye D., Chen L. CO2 Hydrogenation to Methanol over Cu/ZnO Plate Model Catalyst: Effects of Reducing Gas Induced Cu Nanoparticle Morphology. *Chemical Engineering Journal*. 2019. V. 374. pp. 221-230.

22. Duan H., Li Y., Lv, X., Chen, D., Long, M., Wen, L. CuO–ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis - The role of ZnO. *Journal of Materials Research*. 2018. V. 33. № 11. pp. 1625-1631.

23. Ayodele O.B. Eliminating reverse water gas shift reaction in CO₂ hydrogenation to primary oxygenates over MFI-type zeolite supported Cu/ZnO nanocatalysts. *Journal of CO₂ Utilization*. 2017. V.20, pp. 368-377.

24. Li C., Yuan X., Fujimo K. Development of highly stable catalyst for methanol synthesis from carbon dioxide. *Applied Catalysis A: General.* 2014. V. 469. pp. 306-311.

25. Jiang Y., Yang H., Gao P., Li X., Zhang J., Liu, H., Wang H., Wei W., Sun, Y. Slurry methanol synthesis from CO₂ hydrogenation over micro-spherical SiO₂ support Cu/ZnO catalysts. *Journal of CO₂ Utilization*. 2018. V. 26. pp. 642-651.

26. Graciani J., Mudiyanselage K., Xu F., Baber, A. E., Evans, J., Senanayake, S. D., Stacchiola D.J., Liu P., Hrbek J., Sanz J. Rodriguez J.A. Highly active copperceria and copper-ceria-titania catalysts for methanol synthesis from CO₂. *Science*. 2014. V. 345. pp. 546-550.

27. Ouyang B., Tan W., Liu B. Morphology effect of nanostructure ceria on the Cu/CeO₂ catalysts for synthesis of methanol from CO₂ hydrogenation. *Catalysis Communications*. 2017. V. 95. pp. 36-39.

28. Li S., Guo L., Ishihara T. Hydrogenation of CO₂ to methanol over Cu/AlCeO catalyst. *Catalysis Today*. 2019. V.339, N1. pp. 352-361.

29. Tan Q., Shi. Z, Wu D. CO₂ Hydrogenation to Methanol over a Highly Active Cu-Ni/CeO₂-Nanotube Catalyst. *Industrial and Engineering Chemistry Research*. 2018. V. 57(31). pp.10148-10158.

30. Chen G., Sun S., Sun X., Fan W., You T. Formation of CeO_2 nanotubes from $Ce(OH)CO_3$ nanorods through kirkendall diffusion. *Inorganic Chemistry*. 2009. V. 48. pp. 1334-1338.

31. Shi Z., Tan Q., Wu D. Ternary copper-ceriumzirconium mixed metal oxide catalyst for direct CO₂ hydrogenation to methanol. *Materials Chemistry and Physics*. 2018.

32. Rhodes M. D. & Bell A. T. The effects of zirconia morphology on methanol synthesis from CO and H_2 over Cu/ZrO₂ catalysts: Part I. Steady-state studies. *J. Catal.* 2005. V. 233. P. 198-209.

33. Rhodes M. D., Pokrovski K. A., Bell A. T. The effects of zirconia morphology on methanol synthesis from CO and H_2 over Cu/ZrO₂ catalysts: Part II. Transient-response infrared studies. *Journal of Catalysis*. 2005. V. 233. pp. 210-220.

34. Tada S., Kayamori S., Honma T. Kamei, H., Nariyuki, A., Kon, K., Takashi T., Ken-ichi S., Shigeo S. Design of Interfacial Sites between Cu and Amorphous ZrO_2 Dedicated to CO_2 -to-Methanol Hydrogenation. *ACS Catalysis.* 2018. V.8, No 9. pp. 7809-7819.

35. T. Witoon, J. Chalorngtham, P. Dumrongbunditkul et al. CO_2 hydrogenation to methanol over Cu/ZrO_2 catalysts: effects of zirconia phases. *Chem. Eng. J.* 2016. V. 293. P. 327-336.

36. Phongamwong T, Chantaprasertporn U, Witoon T, Numpilai T, Poo-Arporn Y, Limphirat W, Donphai W, Dittanet P, Chareonpanich M, Limtrakul J. CO₂ hydrogenation to methanol over CuO-ZnO-ZrO₂-SiO₂ catalysts: effect of SiO₂ contents. *Chemical Engineering Journal*. 2017. V. 316. pp. 692-703.

37. Witoon T., Numpilai T., Phongamwong T., Donphai W., Boonyuen C., Warakulwit C., Chareonpanich M., Limtrakul J. Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO₂ catalyst by adding graphene oxide for CO₂ hydrogenation to methanol. *Chemical Engineering Journal*. 2018. V. 334. pp. 1781-1791.

38. Gao P., Li F., Zhao N., Xiao F., Wei W., Zhong L., Sun Y. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO₂ hydrogenation to methanol. *Applied Catalysis A: General.* 2013. V. 468. pp. 442-452.

39. Zhao F., Fan L., Xu K., Hua D., Zhan G., Zhou S.-F. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO₂ hydrogenation to methanol. *Journal of CO₂ Utilization*. 2019. V. 33. pp. 222-232.

40. Kamensky D.S., Yevdokymenko V.A., Tkachenko T.V., Khimach N.Y., Kashkovsky V.I. Hydrogenation of carbon dioxide as an alternative source of hydrocarbons. *Kataliz ta naftohimia*. 2020. V.29. pp. 52-58.

41. Chen D., Mao D., Xiao J., Guo X., Yu J. CO_2 hydrogenation to methanol over CuO–ZnO–TiO₂–ZrO₂: a comparison of catalysts prepared by sol–gel, solid-state

reaction and solution-combustion. *Journal of Sol-Gel Sci*ence and Technology. 2018. V.86, № 3. pp. 719-730.

42. Xiao J., Mao D., Wang G. CO₂ hydrogenation to methanol over CuO-ZnO-TiO-ZrO2 catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents. *International Journal of Hydrogen Energy*. 2019. V.44, № 29. pp. 14831-14841.

43. Olah G.A., Goeppert A., Prakash G.K.S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas torenewable, environmentally carbon neutral fuels and synthetic hydrocarbons. *The Journal of Organic Chemistry*. 2009. V.74, № 2. pp. 487498.

44. Meshkini Far R., Dyachenko A., Gaidai S., Bieda O., Filonenko M., Ishchenko O. Catalytic properties of Ni-Fe systems in the reaction of CO₂ methanation at atmospheric pressure. *Acta Physica Polonica A*. 2018. 133 (4). 1088-1090.

45. Erena J., Sierra I., Aguayo A.T. Ateka A., Olazar M., Bilbao J. Kinetic modelling of dimethyl ether synthesis from $(H_2 + CO_2)$ by considering catalyst deactivation. *Chemical Engineering Journal.* 2011. V.174, No 2-3. pp. 660-667.

46. Jia G., Tan Y, Han Y. A Comparative Study on the Thermodynamics of Dimethyl Ether Synthesis from CO Hydrogenation and CO₂ Hydrogenation. *Industrial & Engineering Chemistry Research*. 2006. V.45, №3, pp. 1152-1159.

47. Aguayo A.T., Erena J., Mier D., Arandes J.M., Olazar M., Bilbao J. Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO-ZnO-Al₂O₃/ γ -Al₂O₃ Catalyst. *Industrial & Engineering Chemistry Research*. 2007. V.46. pp. 5522-5530.

48. Suwannapichat Y., Numpilai T., Chanlek N., Faungnawakij K., Chareonpanich M., Limtrakul J., Witoon T. Direct synthesis of dimethyl ether from CO₂ hydrogenation over novel hybrid catalysts containing a Cu ZnO ZrO₂ catalyst admixed with WOx/Al₂O₃ catalysts: Effects of pore size of Al₂O₃ support and W loading content. *Energy Conversion and Management*. 2018. V.159. pp.20-29.

49. Ereña J., Garoña R., Arandes J. M., Aguayo A.T., Bilbao J. Direct Synthesis of Dimethyl Ether From (H₂+CO) and (H₂+CO₂) Feeds. Effect of Feed Composition. *International Journal of Chemical Reactor Engineering.* 2005. 3(1).

50. Su T., Zhou X., Qin Z., & Ji H. Intrinsic Kinetics of Dimethyl Ether Synthesis from Plasma Activation of CO₂ Hydrogenation over Cu-Fe-Ce/HZSM-5. *Chem-PhysChem*. 2016. 18(3). 299-309.

51. Liu R., Qin Z., Ji H., Su T. Synthesis of Dimethyl Ether from CO₂ and H₂ Using a Cu–Fe–Zr/HZSM-5 Catalyst System. *Industrial & Engineering Chemistry Research*. 2013. 52(47). 16648-16655.

52. An X., Zuo Y-Z., Zhang Q., Wang D., Wang J.-F. Dimethyl Ether Synthesis from CO₂ Hydrogenation on a CuO-ZnO-Al₂O₃-ZrO₂/HZSM-5 Bifunctional Catalyst. *Industrial & Engineering Chemistry Research*. 2008. V. 47.

pp. 6547-6554.

53. Ateka A., Sierra I., Ereña J. et al. Performance of CuO–ZnO–ZrO₂ and CuO–ZnO–MnO as metallic functions and SAPO-18 as acid function of the catalyst for the synthesis of DME co-feeding CO₂. Fuel Process. Technol. 2016. V.152. P. 34-45.

54. Liu R., Tian H., Yang A. Zha F., Ding J., Chang Y. Preparation of HZSM-5 membrane packed CuO–ZnO–Al₂O₃ nanoparticles for catalyzing carbon dioxide hydrogenation to dimethyl ether. *Applied Surface Science*. 2015. V. 345. pp. 1-9.

55. Sánchez-Contador M., Ateka A., Aguayo A.T., Bilbao J. Direct synthesis of dimethyl ether from CO and CO₂ over a core-shell structured CuO-ZnO-ZrO₂@SAPO-11 catalyst. *Fuel Processing Technology*. 2018. V.179. pp. 258-268.

56. Yang G., Tsubaki N., Shamoto J., Yoneyama Y., Zhang Y. Confinement Effect and Synergistic Function of H-ZSM-5/Cu-ZnO-Al₂O₃Capsule Catalyst for One-Step Controlled Synthesis. *Journal of the American Chemical Society*. 2010. 132(23). 8129-8136.

57. Frusteri F., Bonura G., Cannilla C., Drago Ferrante G., Aloise A., Catizzone E., Migliori M., Giordano G. Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO₂ hydrogenation. *Applied Catalysis B: Environmental.* 2015. 176-177, 522-531.

58. García-Trenco A., Vidal-Moya A., Martínez A. Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction. *Catalysis Today.* 2012. 179. 43-51.

59. Frusteri F., Migliori M., Cannilla C., Frusteri L., Catizzone E., Aloise A., Giordano G., Bonura G. Direct CO₂-to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. *Journal of CO₂ Utilization*. 2017. 18. 353-361.

60. Catizzone E., Bonura G., Migliori M., Braccio G, Frusteri F., Giordano G. The Effect of Zeolite Features on Catalytic Performances of CuZnZr/Zeolite Hybrid Catalysts in One-pot CO₂-to-DME Hydrogenation. *TECNICA ITALIANA-Italian Journal of Engineering Science*. 2019.V.63, No. 2-4. pp. 257-262

61. Catizzone E., Bonura G., Migliori M., Frusteri F., Giordano G.CO₂ Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. *Molecules*. 2018. 23. 31

62. Bahruji H., Esquius J.R, Bowker M., Hutchings G., Armstrong R.D., Jones W. Solvent Free Synthesis of PdZn/TiO₂. Catalysts for the Hydrogenation of CO₂ to Methanol. *Topics in Catalysis*. 2018. 61 (3). 144-153.

63. Bahruji H., Armstrong R.D., Ruiz Esquius J., Jones W., Bowker M., Hutchings G.J. Hydrogenation of CO₂ to Dimethyl Ether over Brønsted Acidic PdZn Catalysts. *Industrial & Engineering Chemistry Research*. 2018. 57(20). 6821-6829. 64. Bonura G., Cannilla C., Frusteri L., Mezzapica A., Frusteri F. DME production by CO₂ hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts. *Catalysis Today.* 2016. 281. pp. 337-344.

65. Bonura G., Cordaro M., Cannilla C., Mezzapica A., Spadaro L., Arena F., Frusteri F. Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO_2 hydrogenation. *Catalysis Today.* 2013. 228. 51-57.

66. Sánchez-Contador M., Ateka A., Ibáñez M., Bilbao J., & Aguayo A. T. Influence of the operating conditions on the behavior and deactivation of a CuO ZnO ZrO₂@SAPO-11 core-shell-like catalyst in the direct synthesis of DME. *Renewable Energy*. 2019.

67. Zhang Y., Fu D., Liu X., Zhang Z., Zhang C., Shi B., Xu J., HanY. Operando Spectroscopic Study of Dynamic Structure of Iron Oxide Catalysts during CO₂ Hydrogenation. *ChemCatChem.* 2018. V.10, № 6. pp. 1272-1276.

68. Al-Dossary M., Ismai A., Fierro J., Bouzid H., Al-Sayari S. Effect of Mn loading onto MnFeO nanocomposites for the CO₂ hydrogenation reaction. *Applied Catalysis B: Environmental*. 2015. V.165. pp.651-660.

69. Choi Y.H., Jang Y., Park J. et al. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels. *Applied Catalysis B: Environmental*. 2017. V.202. P. 605-610.

70. Rodemerck U., Holena M., Wagner E., Smejkal Q., Barkschat A., Baerns M. Catalyst Development for CO₂ Hydrogenation to Fuels. *ChemCatChem.* 2013. V.5, pp. 1948-1955.

71. Wei J., Yao R., Ge Q. Wen Z, Ji X., Fang C., Zhang J., Xu H., Sun J. Catalytic hydrogenation of CO_2 to isoparaffins over Fe-based multifunctional catalysts. *ACS Catalysis*. 2018. V.8. No 11. pp. 9958-9967.

72. Bai R., TanY., Han Y. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe–Zn–M/zeolite composite catalysts. *Fuel Processing Technology*. 2004. V. 86(3), pp. 293-301.

73. Ni X., Tan Y., Han Y., Tsubaki N.. Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation. *Catalysis Communications*. 2007. V.8. P.1711-1714.

74. Ye R., Ding J., Gong W., Argyle M., Zhong Q., Wang Y., Russell C., Xu Z., Russell A., Li Q., Fan M., Yao Y. CO₂ hydrogenation to high-value products via heterogeneous catalysis. *NATURE COMMUNICATIONS*. 2019. 10:5698 (online)

75. Gao P., Li S.G., Bu X., Dang S., Liu Z., Wang H., Zhong L., Qiu M., Yang C., Cai J., Wei W., Sun Y. Direct conversion of CO_2 into liquid fuels with high selectivity over a bifunctional catalyst. *Nature Chemistry*. 2017 (online).

76. Gao P., Dang S., Li S., Bu X., Liu Z., Qiu M., Wei W., Sun Y. et al. Direct Production of Lower Olefins from CO₂ Conversion via Bifunctional Catalysis. *ACS Catalysis*. 2017. V.8. pp. 571-578.

77. Gao J., Jia C., Liu B. Direct and selective hydrocatalysts. *Catalysis Science and Technology*. 2017. V.7. pp. 5602-5607.

78. Kusama H., Okabe K., Sayama K., Arakawa H. CO₂ hydrogenation to ethanol over promoted Rh/SiO₂ catalysts. *Catalysis Today*. 1996. V.28, pp. 261-266.

79. Kusama H., Okabe K., Sayama K., Arakawa H. Ethanol synthesis by catalytic hydrogenation of CO₂ over Rh-Fe/SiO₂ catalysts. *Energy*. 1997. V.22. pp. 343-348.

80. Wang G., Luo R., Yang C., Song J., Xiong C., Tian H., Zhao Z., Mu R., Gong J. Active sites in CO₂ hydrogenation over confined VOx-Rh catalysts. *SCIENCE CHINA Chemistry*. 2019. 62 (online).

81. Inui T., Yamamoto T. Effective synthesis of ethanol from CO₂ on polyfunctional composite catalysts. *Catalysis Today*. 1998. V.45. pp. 209-214.

82. Zheng J., An K., Wang J. Direct synthesis of ethanol via CO₂ hydrogenation over the Co/La-Ga-O composite oxide catalyst. *Journal of Fuel Chemistry and Technology*. 2019. V. 47, № 6. pp. 697-708.

83. Zhang S., Liu X., Shao Z., Wang H., Sun Y. Direct CO₂ hydrogenation to ethanol over supported Co₂C catalysts: Studies on support effects and mechanism. *Journal of Catalysis*. 2020. V.382. pp. 86-96.

84. Wang L., Wang L., Liu X, Wang H., Zhang W., Yang Q., Ma J., Dong X., Yoo S., Kim J., Meng X., Xiao genation of CO₂ to ethylene and propene by bifunctional F. Selective Hydrogenation of CO₂ to Ethanol over Cobalt Catalysts. *Angewandte Chemie International Edition*. 2018. V. 57. pp. 6104-6108.

85. Wang L., Shenxian H., Wang L., Lei Y., Meng X., Xiao F.-S. Cobalt–nickel catalysts for selective hydrogenation of carbon dioxide into ethanol. 2019. *ACS Catalysis*.

86. Chen Y., Choi S., Thompson L.T. Low temperature CO₂ hydrogenation to alcohols and hydrocarbons over Mo₂C supported metal catalysts. *Journal of Catalysis*. 2016. V. 343. pp. 147-156.

87. Wang D., Bi Q., Yin G., Zhao W., Huang F., Xie X., Jiang M. Direct synthesis of ethanol via CO₂ hydrogenation using supported gold catalysts. *Chemical Communications*. 2016. 52(99). 14226-14229.

88. Bai S., Shao Q., Wang P. Dai Q, Wang X., Huang X. Highly Active and Selective Hydrogenation of CO₂ to Ethanol by Ordered Pd-Cu Nanoparticles. *Journal of the American Chemical Society*. 2017. V. 139. pp. 6827-6830.

89. He Z., Qian Q., Ma J., Meng Q., Zhou H., Song J., Liu Z., Han B. Water-Enhanced Synthesis of Higher Alcohols from CO₂ Hydrogenation over a Pt/Co₃O₄ Catalyst under Milder Conditions. *Angewandte Chemie International Edition*. 2016. V. 55. pp. 737-741.

Надійшла до редакції 21.09.2020 р.

Catalysts for hydrogenation of CO₂ into components of motor fuels

Yu.V. Bilokopytov¹, S.L. Melnykova², N.Yu. Khimach²

¹National Aviation University, 1, Liubomyra Huzara ave, Kyiv, Ukraine 03058 ²V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 50, Kharkivske shosse, Kyiv, Ukraine 02160 <u>himyla@gmail.com</u>, <u>shtrihi@gmail.com</u>

 CO_2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO_2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO_2 conversion processes is analyzed.

Зазначається, що основними активними компонентами перетворення CO_2 в метанол є атоми і йони міді, що взаємодіють з оксидними складовими каталізатора. Простежується позитивний вплив на активність традиційного мідь-цинк-алюмінійоксидного каталізатора синтезу метанолу з синтез-газу добавок оксидів інших металів, зокрема тих, що мають сильні основні центри на поверхні. Найактивнішими каталізаторами синтезу ДМЕ з CO_2 і H_2 є біфункціональні, що, поряд з каталізатором синтезу метанолу, містять дегідратуючий компонент, наприклад, мезопористі цеоліти з кислотними центрами слабкої та середньої сили, рівномірно розподіленими на поверхні.

It is noted that the main active components of CO_2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of dimethyl ether (DME) from CO_2 and H_2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface.

The synthesis of gasoline hydrocarbons ($\geq C_5$) is carried out through the formation of CO or CH₃OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO₂ into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems.

Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO₂ conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.

Key words: Hydrogenation, carbon dioxide, catalyst, methanol, ethanol, dimethyl ether, hydrocarbons.