Theoretical and scientific-technical collection
ISSN 2707-5796 (Online), ISSN 2412-4176 (Print)
Ukrainian | Russian |  English

Kataliz ta naftohimia: 2019, Vol.28, 29-37.

https://doi.org/10.15407/kataliz2019.28.029

Features of concentration dependence of load-carrying performance of spheroidal carbonic nanoclusters ethanol solutions

 


V.S. Pilyavsky, Ye.V. Polunkin, T.M. Kameneva, Ya.A. Bereznitsky


V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine


ABSTRACT


Though having significant advantages, use of ethanol as motor fuel for internal combustion engines entails a number of drawbacks. Substantial disadvantages of ethanol as such are its low anti-wear properties due to low load-carrying performance. Low load-carrying performance of ethanol does not allow for hydrodynamic friction mode in frictional nodal points of the fuel-delivery equipment and thereby shortens their operational life. The essence of concept of load-carrying performance has been analyzed. It has been shown that load-carrying performance for liquid media is similar to the characteristic of hardness for solid bodies. Both of these properties characterize suitability of materials for operation in certain conditions. At the same time, results of studies on changes that occur in these properties depending on variation of material composition, external conditions and influences enable to determine mechanisms and consistent patterns of transformations in volume or in surface layers of the studied materials under the influence of different factors. To increase loadcarrying performance, we proposed to use nano-sized carbonic clusters of spheroidal structure as additives to ethanol fuels. The nonmonotone monomodal nature of dependence of load-carrying performance of ethanol solutions from the content of nano-sized (5–40 nm) spheroidal carbonic clusters has been established. It has been demonstrated that with increase in solution concentration of nanoparticles the load-carrying performance escalates and reaches a maximum with their mass fraction of 0.01 %. When concentration of nanoparticles exceeds this threshold value, the loadcarrying performance of the solution starts to decline and approaches a value that is characteristic of additive-free ethanol. The established extreme nature of dependence has been accounted for reorganization of liquid supramolecular structure under the influence of carbonic nanoparticles.


KEYWORDS


motor ethanol fuel, internal combustion engines, carbonic nanoclusters, load-carrying performance of lubricants, solvation, solutions supramolecular structure

REFERENCES


  1. Pylyavsʹkyy V.S., Hayday O.O., Kyrpach K.O., Polunkin Ye.V., Troshyn P.A., Marakhovskyi V.P. Ekspluatatsiini vlastyvosti alternatyvnykh motornykh palyv na osnovi oksyhenativ. Kataliz i neftekhimia. 2012. (21). 162-167. [In Ukrainian].
  2. Emelianov V.E., Nykytyna E.A., Asiaev A.N. Bioеtanolnoe toplivo E-85. Mir nefteproduktov. 2005. 8. 34-37. [In Russian].
  3. Pyliavskyi V.S., Polunkin Ye.V., Kameneva T.M. O kineticheskoy prirode nesushchei sposobnosti maloviazkikh zhydkostei. Kataliz i neftekhimia. 2013. 22. 37-41. [In Russian].
  4. Polunkyn E.V., Kameneva T.M., Pyliavskyi V.S., Zhyla R.S., Haidai O.A., Troshyn P.A. Antyokyslytelnye i protyvozadyrnye svoistva halohenirovannykh fullerenov. Kataliz i neftekhimia. 2012. 20. 70-74. [In Russian].
  5. Bozhko E.A., Esylevskyi S.A., Cherniavskyi E.K., Sheludko E.V., Pyliavskyi V.S., Polunkyn E.V, Bohomolov Yu.Y. Povyshenie nesushchei sposobnosty etanola kak komponenta alternatyvnoho motornoho topliva: eksperyment i molekuliarnoe modelirovanie. Dop. NAN Ukrainy. 2016. 2. 79-86. [In Russian].
  6. Kuznetsov V.L., Chuvilin A.L., Butenko Y.V., Malkov I.L., Titov V.M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 1994. 222(4). 343-347.https://doi.org/10.1016/0009-2614(94)87072-1
  7. Bartelmess Ju., Giordani S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein Journal of Nanotechnology. 2014. 5. 1980-1998.https://doi.org/10.3762/bjnano.5.207
  8. Polunkin E.V., Piljavsky V.S., Zhila R.S., Kameneva T.M., Troshin P.A. The antioxidative and tribological properties of modified fullerenes in liquid mediums. 5th Int. Conf.: Physics of Liquid Matter: Modern Problems, Kyiv, Ukraine, May 21-24. 2010. 305.
  9. Rud A.D., Kuskova N.Y., Bohuslavskyi L.Z., Kyrian Y.M., Zelynskaia H.M., Belыi N.M. Strukturno-enerhetycheskie aspekty synteza uhlerodnykh nanomaterialov vysokovoltnymi elektrorazriadnymi metodami. Khimiya i khimicheskaya tekhnologiya. 2013. 56 (7). 99-104. [In Russian].
  10. Vogel R., Willmott G., Kozak D., Roberts G., Anderson W., Groenewegen L., Glossop B., Barnett A., Turner A., Trau M. Quantitative sizing of nano-microparticles with a tunable elastomeric pore sensor. Analyt. Chem. 2011. 83 (9). 3499-3506.https://doi.org/10.1021/ac200195n
  11. Rebynder P.A. Poverkhnostnye yavlenyia v dispersnykh systemakh. Kolloidnaya khimiya. Izbrannyye trudy. M. Nauka. 1978. 368. [In Russian].
  12. Bakly D. Poverkhnostnye yavleniya pri adgezii i friktsionnom vzaimodeystvii. M. Mashynostroenye. 1986. 360. [In Russian].
  13. Kuliyev A.M., Khimiya i tekhnologiya prisadok k maslam i toplivam. Leningrad. Khimiya.1985. 312. [In Russian].
  14. Harkunov D.N. Trybotekhnika. Moskva. Izd-vo MSKhA. 2001. 616. [In Russian].
  15. Konovalov A.I., Ryzhkina I.S. Obrazovaniye nanoassotsiatov - klyuch k ponimaniyu fiziko-khimicheskikh i biologicheskikh svoystv vysokorazbavlennykh vodnykh rastvorov. Izv. RAN. Ser. khim. 2014. 1. 1-14. [In Russian].https://doi.org/10.1007/s11172-014-0388-y
  16. Konovalov A.I., Mal'tseva Ye.L., Ryzhkina I.S., Murtazina L.I., Kiseleva Yu.V., Kasparov V.V., Pal'mina N.P. Obrazovaniye nanoassotsiatov - faktor, opredelyayushchiy fiziko-khimicheskiye i biologicheskiye svoystva vysokorazbavlennykh vodnykh rastvorov. Dokl. RAN. 2014. 456 (5). 561-564. [In Russian].https://doi.org/10.1134/S0012501614060050
  17. Malenkov H.H., Struktura i dinamika zhydkoi vody. Zhurnal strukturnoy khimii. 2006. 47. 5-35. [In Russian].
  18. Goncharuk V.V., Smirnov V.N., Syroyeshkin A.V., Malyarenko V.V., Klastery i gigantskiye geterofaznyye klastery vody. Khimiya i tekhnologiya vody. 2007. 29 (1). 3-17. [In Russian].https://doi.org/10.3103/S1063455X07010018
  19. Haidai О., Pilyavskiy V., Shelud'ko Y., Polunkin Y. Improvement of performance characteristics of ethanol motor fuels through use of additives based on nanoscale carbon clusters. EUREKA: Physical Sciences and Engineering. 2016. 6. 3-10.https://doi.org/10.21303/2461-4262.2016.00213
  20. Polunkin Ye.V., Gayday O.A., Pilyavskiy V.S., Stel'makh A.U. Vliyaniye uglerodnykh nanoklasterov na tribologicheskiye kharakteristiki motornykh topliv. Sb. tezisov: Mezhd. nauchno-tekhnicheskaya konferentsiya. "Polikomtrib - 2015". Gomel'. IMMS NANB. 2015. 187. [In Russian].
  21. Gayday O.O., Pilyavskiy V.S., Polunkin Ye.V., Polipshennya ekspluatatsiynykh vlastyvostey etanol'nykh motornykh palyv mikrodozamy karbonovykh sfero-idal'nykh nanoklasteriv, Naukoemni tekhnologii (Science-based technologies). 2016. 1 (29). 3-8. [In Ukrainian].
  22. Pavlinov L.I., Rabinovich I.B., Pogorelko V.Z., Ryabov A.V., Skorost' zvuka i szhimayemost' sopolimerov metilmetakrilata s metakrilovoy kislotoy. Vy-sokomolekulyarnyye soyedineniya. 1968. 6. 1270-1276. [In Russian].

Current issue

2019 - Vol.28

Content of the issue

Download article