Theoretical and scientific-technical collection
ISSN 2707-5796 (Online), ISSN 2412-4176 (Print)
Ukrainian|  English

Kataliz ta naftohimia: 2020, Vol.29, 1-10.

https://doi.org/10.15407/kataliz2020.29.001

Efficient hydrogen production by steam reforming of ethanol over ferrite catalysts

 


L.Yu. Dolgikh, I.L. Stolyarchuk, L.A. Staraya, I.V. Vasylenko,
Y.I. Pyatnitsky, P.E. Strizhak



L.V. Pisarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauky, 31, Kyiv 03028, Ukraine.
E-mail: yupyat@gmail.com


ABSTRACT


Steam reforming of ethanol is considered nowadays to be attractive mode of production of hydrogen as the most viable energy carrier for the future. Additionally, producing hydrogen from ethanol steam reforming would be environmentally friendly. Ethanol can be prepared from agricultural residues and hence is a renewable resource. Its producing from biomass fermentation is enough simple and cheap way. Besides operating conditions, the use of catalysts plays a crucial role in hydrogen production through ethanol re-forming. Different catalysts have been used for the steam reforming of ethanol, in the great majority of cases, supported noble metals, nickel and cobalt. The present work is devoted to investigation of the ethanol steam reforming over ferrites as novel oxide type of catalysts for this reaction. The ferrite catalysts, MFe2O4 (M = Mg, Mn, Fe, Zn), have been prepared by coprecipitation method; to characterize the catalysts, the methods of X-ray diffraction, electron diffraction, BET, temperature programmed desorption of CO2, the thermal gravimetry have been used. The catalytic experiments have been per-formed at atmospheric pressure in the temperature range 573-823 K. The main reaction products were acetaldehyde, acetone, CO2 and H2. It is important to note, that CO, which is undesirable impurity in hydrogen, was not appeared in the reaction products. At relatively low temperatures, high selectivity for acetone (71.3 %), that is very close to its theoretical value (75 %), was observed for FeFe2O4. Thus, the FeFe2O4 ferrite can be con-sidered as an efficient catalyst for the direct conversion of ethanol to acetone. At higher temperatures, selectivity to acetone decreases due to acetone conversion to CO2 and the target product H2. The selectivity to hydrogen increases up to 823 K for all investigated ferrites. Maximum hydrogen yield (83.4 %) was achieved for MnFe2O4, therefore it is a promising object for further study.


KEYWORDS


ethanol, steam reforming, ferrite catalysts, hydrogen

REFERENCES


  1. Ghasemzadeh K., Jalilnejad E., Tilebon S.M.S. Hydrogen produc-tion technologies from ethanol. Ethanol Science and Engineering. Else-vier. 2018. 307-340. https://doi.org/10.1016/B978-0-12-811458-2.00012-2
  2. Lazar M. D., Senila L., Dan M., Mihe M. Crude Bioethanol Re-forming Process: The Advantage of a Biosource Exploitation. Ethanol Science and Engineering. Elsevier. 2018. 257-288. https://doi.org/10.1016/B978-0-12-811458-2.00010-9
  3. Liu Z., Senanayake S.D., Rodriguez J.A. Catalysts for the Steam Reforming of Ethanol and Other Alcohols. Ethanol Science and Engi-neering. Elsevier. 2018. 133-158. 574 p. https://doi.org/10.1016/B978-0-12-811458-2.00005-5
  4. Contreras J.L., Salmones J., Colin-Luna J.A., Nuno L., Quintana B., Cordova I., Zeifert B., Tapia C., Fuentes G.A. Catalysts for H2 pro-duction using the ethanol steam reforming (a review). Int. J. Hydrogen Energy. 2014. 39. 18835-18853. https://doi.org/10.1016/j.ijhydene.2014.08.072
  5. Pyatnitsky Y.I., Dolgykh L.Yu., Stolyarchuk I.L. Strizhak P.E. Production of hydrogen by steam reforming of ethanol. Theor. Exp. Chem. 2013. 49. 272-297. https://doi.org/10.1007/s11237-013-9327-5
  6. Mattos L.V., Jacobs G., Davis B.H. Noronha F.B. Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem. Rev. 2012. 112. 4094-4123. https://doi.org/10.1021/cr2000114
  7. Piscina P.R., Homs N. Use of biofuels to produce hydrogen (refor-mation processes). Chem. Soc. Rev. 2008. 37. 2459-67. https://doi.org/10.1039/b712181b
  8. Ni M., Leung D.Y.C., Leung M.K.H. A review on reforming bio-ethanol for hydrogen production. Int. J Hydrogen Energy. 2007. 32. 3238-3247. https://doi.org/10.1016/j.ijhydene.2007.04.038
  9. Vaidya P. D., Rodrigues A. E. Review. Insight into steam reform-ing of ethanol to produce hydrogen for fuel cells. Chem. Eng. J. 2006. 117. 39-49. https://doi.org/10.1016/j.cej.2005.12.008
  10. Haryanto A., Fernando S., Murali N., Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy & Fuels. 2005. 19. 2098-2106. https://doi.org/10.1021/ef0500538
  11. Simson A., Farrauto R., Castaldi M. Steam reforming of etha-nol/gasoline mixtures: Deactivation, regeneration and stable perfor-mance. Appl. Catal. B. 2011. 106. 295- 303. https://doi.org/10.1016/j.apcatb.2011.05.027
  12. Bilal M., Jackson S.D. Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts: The effect of impurities on selectivity and cata-lyst deactivation. Appl. Catal. A. 2017. 529. 98-107. https://doi.org/10.1016/j.apcata.2016.10.020
  13. Palma V., Castaldoa F., Ciambellia P., Iaquaniellob G. CeO2-supported Pt/Ni catalyst for the renewable and clean H2 production via ethanol steam reforming. Appl. Catal. B. 2014. 145. 73-84. https://doi.org/10.1016/j.apcatb.2013.01.053
  14. Cifuentes B., Hernández M., Monsalve S., Cobo M. Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 cata-lyst: Synergistic effect of the Si:Ce ratio on the catalyst performance. Appl. Catal. A. 2016. 523. 283-293. https://doi.org/10.1016/j.apcata.2016.06.014
  15. González-Gil R., Herrera C., Larrubia M.A., Mariño F., Laborde M., Alemany L.J. Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study. Int. J. Hydrogen Energy. 2016. 41.16786-16796. https://doi.org/10.1016/j.ijhydene.2016.06.234
  16. Greluk M., Słowik G., Rotko M., Machocki A. Steam reforming and oxidative steam reforming of ethanol over PtKCo/CeO2 catalyst. Fuel. 2016. 183. 518-530. https://doi.org/10.1016/j.fuel.2016.06.068
  17. Auprêtre F., Descorme C., Duprez D. Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal. Comm. 2002. 3. 263-267. https://doi.org/10.1016/S1566-7367(02)00118-8
  18. Liguras D.K., Kandarides D.I., Verykios X.E. Production of hy-drogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl. Catal. B. 2003. 43. 345-354. https://doi.org/10.1016/S0926-3373(02)00327-2
  19. Salge J.R., Deluga G.A., Schmidt L.D. Catalytic partial oxidation of ethanol over noble metal catalysts. J. Catal. 2005. 235. 69-78. https://doi.org/10.1016/j.jcat.2005.07.021
  20. Cai W., Zhang B., Li Y., Xu Y., ShenW. Hydrogen production by oxidative steam reforming of ethanol over an Ir/CeO2 catalyst. Catal. Comm. 2007. 8. 1588-1594. https://doi.org/10.1016/j.catcom.2007.01.017
  21. Wang K., Dou B., Jiang B., Zhang Q., Li M., Chen H., Xu Y. Ef-fect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers. Int. J. Hydrogen Energy. 2016. 41. 17334-17347. https://doi.org/10.1016/j.ijhydene.2016.07.261
  22. Ramírez-Hernández G.Y., Viveros-García T., Fuentes-Ramírez R., Galindo-Esquivel I.R. Promoting behavior of yttrium over nickel supported on alumina-yttria catalysts in the ethanol steam reforming reaction. Int. J. Hydrogen Energy. 2016. 41. 9332-9343. https://doi.org/10.1016/j.ijhydene.2016.04.080
  23. Biswas P., Kunzru D. Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst. Chem. Eng. J. 2008. 136. 41-49. https://doi.org/10.1016/j.cej.2007.03.057
  24. Frusteri F., Freni S., Chiodo V., Donato S., Bonura G., Cavallaro S. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. Int. J. Hydrogen Energy 2006. 31. 2193 - 2199. https://doi.org/10.1016/j.ijhydene.2006.02.024
  25. Fatsikostas A.N., Kondarides D.I., Verykios X.E. Steam reform-ing of biomass-derived ethanol for the production of hydrogen for fuel cell applications. J. Catal. 2004. 225. 439-452.
  26. Yu N., Zhang H., Davidson S.D., Sun J., Wang Y. Effect of ZnO facet on ethanol steam reforming over Co/ZnO. Catal. Commun. 2016. 93-97. https://doi.org/10.1016/j.catcom.2015.10.018
  27. Song H., Zhang L., Ozkan U.S. The effect of surface acidic and basic properties on the performance of cobalt-based catalysts for etha-nol steam reforming. Top. Catal. 2012. 55. 1324-1331. https://doi.org/10.1007/s11244-012-9918-8
  28. Song H., Ozkan U.S. Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. J. Catal. 2009. 261. 66-74. https://doi.org/10.1016/j.jcat.2008.11.006
  29. Llorca J., Homs N., Sales J., Piscina1 P.R. Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reform-ing. J. Catal. 2002. 209. 306-317. https://doi.org/10.1006/jcat.2002.3643
  30. Soykal I.I., Bayram В, Sohn H., Gawade P., Miller J. T., Ozkan U.S. Ethanol steam reforming over Co/CeO2 catalysts: Investigation of the effect of ceria morphology. Appl. Catal. A. 2012. 449. 47-58. https://doi.org/10.1016/j.apcata.2012.09.038
  31. Muroyama H., Nakase R., Matsui T., Eguchi K. Ethanol steam reforming over Ni-based spinel oxide. Int. J. Hydrogen Energy. 2010. 35 1575-1581. https://doi.org/10.1016/j.ijhydene.2009.12.083
  32. Barroso M.N., Gomez M.F., Arrua L.A., Abello M.C. Reactivity of aluminium spinels in the ethanol steam reforming reaction. Catal. Lett. 2006. 109. 13-19. https://doi.org/10.1007/s10562-006-0051-9
  33. Li Z., Yi W., Qun H. Preparation and properties of K2NiF4-type perovskite oxides La2NiO4 catalysts for steam reforming of ethanol. Trans. Nonferrous Met. Soc. China. 2009. 19. 1444-1449. https://doi.org/10.1016/S1003-6326(09)60048-0
  34. Chen S.Q., Liu Y. LaFeyNi1-yO3 supported nickel catalysts used for steam reforming of ethanol. Intern. J. Hydrogen Energy. 2009. 34. 4735-4746. https://doi.org/10.1016/j.ijhydene.2009.03.048
  35. Ma F., Chu W., Huang L., Yu X., Wu Y. Steam reforming of ethanol over Zn-doped LaCoO3 perovskite nanocatalysts. Chin. J. Catal. 2011. 32. 970-977. https://doi.org/10.1016/S1872-2067(10)60218-5
  36. Stolyarchuk I.L., Dolgikh L.Yu., Vasilenko I.V., Pyatnitsky Yu.I., Strizhak P.E. Catalysis of steam reforming of ethanol by nanosized manganese ferrite for hydrogen production. Theor. Exp.Chem. 2012. 48. 129-134. https://doi.org/10.1007/s11237-012-9250-1
  37. Kim D.K., Mikhaylova M., Zhang Yu, Muhammed M. Protec-tive Coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 2003. 15. 1617-1627.https://doi.org/10.1021/cm021349j
  38. Liu C.-P., Li M.-W., Cui Z. Huang J.-R., Tian Y.-L., Lin T., Mi W.-B. Comparative study of magnesium ferrite nanocrystallites prepared by sol-gel and coprecipitation methods. J. Mater. Sci. 2007. 42. 6133-6138. https://doi.org/10.1007/s10853-006-1070-z
  39. Philip J., Gnanaprakash G., Panneerselvam G., Antony M. P., Jayakumar T., Raj B. Effect of thermal annealing under vacuum on the crystal structure, size, and magnetic properties of ZnFe2O4 nanoparticles. J. Appl. Phys. 2007. 102. 054305.https://doi.org/10.1063/1.2777168
  40. Dolgykh L., Stolyarchuk I., Deynega I., Strizhak P. The use of in-dustrial dehydrogenation catalysts for hydrogen production from bio-ethanol. Int. J. Hydrogen Energy. 2006. 31. 1607-1610. https://doi.org/10.1016/j.ijhydene.2006.06.028
  41. Giri J., Sriharsha T., Asthana S., Tumkur K., Rao G., Nigam A.K., Dhirendra B. Synthesis of capped nanosized Mn1−xZnxFe2O4 (0⩽x⩽0.8) by microwave refluxing for bio-medical applications. J. Magnet. Mag-net. Mater. 2005. 293. 55-61. https://doi.org/10.1016/j.jmmm.2005.01.043
  42. Rana S., Philip J., Raj B. Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mater. Chem. Phys. 2010. 124. 264-69. https://doi.org/10.1016/j.matchemphys.2010.06.029
  43. Rethwisch D.G., Dumesic J.A. Effect of metal-oxygen bond strength on properties of oxides. 1. Infrared spectroscopy of adsorbed carbon monoxide and carbon dioxide. Langmuir. 1986. 2. 73-79. https://doi.org/10.1021/la00067a013
  44. Jensen M.B., Pettersson L.G.M., Swang O., Olsbye U. CO2 sorption on MgO and CaO surfaces:  a comparative quantum chemical cluster study. J. Phys. Chem. B. 2005. 109 16774-16781. https://doi.org/10.1021/jp052037h
  45. Díez V.K., Apestegua C.R., Di Cosimo J.I. Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. J. Catal. 2006. 240. 235-244. https://doi.org/10.1016/j.jcat.2006.04.003
  46. Jacobs J.P., Maltha A., Reitjes J.G.H., Drimal J., Ponec V., Brong-ersma H.H., The surface of catalytically active spinels. J. Catal. 1994. 47. 294-300. https://doi.org/10.1006/jcat.1994.1140
  47. Pyatnytsky Y.I., Strizhak P. E. Calculating Equilibrium and Simulating Kinetics of Heterogeneous Catalytic Reactions. 2018, https://www.free-ebooks.net/ebook/Calculating-Equilibrium-and-Simulating-Kinetics-of-Heterogeneous-Catalytic-Reactions.
  48. Schweitzer N.M., Hu B., Das U., Kim H., Greeley J., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal. 2014. 4. 1091-1092. https://doi.org/10.1021/cs401116p
  49. Elliott D.J., Pennella F. The formation of ketones in the presence of carbon monoxide over CuO/ZnO/Al2O3. J. Catal. 1989. 119. 359-367. https://doi.org/10.1016/0021-9517(89)90166-8
  50. Nishiguchi T., Matsumoto T., Kanai H., Utani K., Marsumura Y., Shen W., Imamura S. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl. Catal. A Gen. 2005. 279. 73-77. https://doi.org/10.1016/j.apcata.2004.10.035

Current issue

2020 - Vol.29

Content of the issue

Download article