Theoretical and scientific-technical collection
ISSN 2707-5796 (Online), ISSN 2412-4176 (Print)
Ukrainian|  English

Kataliz ta naftohimia: 2020, Vol.29, 73-83.

https://doi.org/10.15407/kataliz2020.29.073

Sonochemical and Mechanochemical Syntheses of Nanodispersed ТіO2/SnO2 System

 


O.V. Sachuk



Institute for Sorption and Problems of Endoecokogy of NAS of Ukraine 03164, Kyiv-164, Henerala Naumova St, 13,email: Slena951@ukr.net


ABSTRACT


The influence of mechanochemical (MChT) (for 4 h in air atmosphere) and ultrasonic (UST, sonochemical) treatment (for 2 hours in aqueous medium) on the physico-chemical properties of TiO2/SnO2 systems with a molar ratio of oxides of 1:1 was investigated. The anisotropic deformation of tin oxide and reduction of the crystallite size of initial oxides during the treatment of TiO2/SnO2=1:1 composition by X-ray diffraction meth-od was found. The results of particle size calculations showed that crystals with a size of about 20 nm are formed in the MChT process, while after UST this indicator slightly differs from the values for the initial sample and is more than 50 nm due to the increase in the specific surface area and pore volume. Analysis of the porous structure showed that during the mechano- and sonoactivation process, the specific surface area and pore volume increase by 2-4 times. Studies of the structure of the samples by the TEM method showed that in activa-tion process the formation of agglomerates which are consist from nanodispersed ring crystals with sizes of 15-20 nm after MChT and 40-50 nm after UST was observed. The catalytic properties of TiO2/SnO2=1:1 samples were tested in the reaction of selective ethanol oxidation. The results of studies on the example of a sonoactivated sample showed that ultrasonic treatment of the sample compared to the initial sample allows to in-crease the selectivity of acetic aldehyde at low temperatures (T < 185°C, S = 100%) and hydrogen at 360°C with a maximum selectivity of this product of 41%. The obtained data show an increase in the catalytic activity of the catalyst what leads to an increase in its productivity from 4 to 10 L/ kgcat × h. The formation of a complex composition of nanodispersed titanium and tin oxides due to mechanochemical and ultrasonic activation leads to an increase in its activity in the reaction of the photocatalytic decomposition of safranin Т dye aqueous solution. It was shown that the rate of dye degradation on the sonoactivated sample under the action of both visible and UV light is slightly higher than in the case of mechanochemical treatment.


KEYWORDS


TiO2/SnO2 system, composite, ethanol, catalyst, oxide

REFERENCES


  1. Mahmoud W.E., Al-Ghamdi A.A. Synthesis and properties of bismuth oxide nanoshell coated polyaniline nanoparticles for promising photovol-taic properties. Polym. Adv. Technol. 2011. 22. 877-881. https://doi.org/10.1002/pat.1591
  2. Ganesh T., Ham D., Chang J., Cai G., Kil B. H., Min S. K., Mane R.S., Han S.H. pH Dependent morphological evolution of α-Bi2O3/PANI composite for supercapacitor applications. J. Nanosci. Nanotechnol. 2011. 11 (1). 589-592. https://doi.org/10.1166/jnn.2011.3206
  3. Jain R., Tiwari D. C., Shrivastava S. Polyaniline-bismuth oxide nanocomposite sensor for quantification of anti-parkinson drug pramipexole in solubilized system. Materials Science and Engineering B. 2014. 185. 53-59. https://doi.org/10.1016/j.mseb.2014.02.007
  4. Khan A., Khan A. A. P., Rahman M. M., Asiri A. M., Al-Youbi A. O. Toward designing efficient riceshaped polyaniline@bismuth oxide nanocomposites for sensor application. J. Sol-Gel Sci. Technol. 2015. 76 (3). 519-528. https://doi.org/10.1007/s10971-015-3802-5
  5. El-Sharkawy R.G. Composites of polyaniline and lead dioxide: preparation, characterization, and catalytic activity. J. Iran Chem. Soc. 2014. 11 (3). 1027-1037. https://doi.org/10.1007/s13738-013-0371-9
  6. Patil S., Lagshetty A., Kalyane S. Microwave absorption studies on conducting polymer (Pani-Pbo) Composites. International Journal of Engineering and Science. 2012. 1 (10). 65-67.
  7. Parveen A., Dashpande R., Ahmed S., Roy A. S. Synthe-sis, characterization, and DC conductivity of polyaniline-lead oxide composites. Chemical Papers. 2013. 67 (3). 350-356. https://doi.org/10.2478/s11696-012-0270-z
  8. Deshpande N.G., Gudage Y.G., Sharma R., Vyas J.C., Kim J. B., Lee Y.P. Studies on tin oxide-intercalated polyaniline nanocompo-site for ammonia gas sensing applications. Sensors and Actuators B. 2009. 138. 76-84. https://doi.org/10.1016/j.snb.2009.02.012
  9. Tai H., Yadong J., Guangzhong X., Junsheng Y. Prepara-tion, characterization and comparative NH3-sensing Characteristic stud-ies of PANI/inorganic oxides nanocomposite thin films. J. Mater. Sci. Technol. 2010. 26 (7). 605-613. https://doi.org/10.1016/S1005-0302(10)60093-X
  10. Pawar S.G., Patil S.L., Chougule M.A., Godse P.R., Band-gar D.K., Patil V.B. Fabrication of polyaniline/TiO2 nanocomposite am-monia vapor sensor. J. Nano- Electron. Phys. 2011. 3 (1). 1056-1063.
  11. Pawar S.G., Patil S.L., Chougule M.A., Raut B.T., Pawar S.A., Patil V.B., Fabrication of polyaniline/TiO2 nanocomposite ammo-nia vapor sensor. Sensors & Transducers Journal. 2011. 125 (2). 107-114.
  12. Huyen D.N., Tung N.T., Thien N D., Thanh L.H. Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors. 2011. 11. 1924-1931. https://doi.org/10.3390/s110201924
  13. Kondawar S.B., Agrawal S.P., Nimkar S.H., Sharma H.J., Patil P.T. Conductive polyaniline-tin oxide nanocomposites for ammonia sensor. Adv. Mat. Lett. 2012. 3 (5). 393-398. https://doi.org/10.5185/amlett.2012.6361
  14. Mikhaylov S., Ogurtsov N., Noskov Yu., Redon N., Cod-deville P., Wojkiewicz J-L., Pud A. Ammonia/amines electronic gas sen-sors based on hybrid polyaniline-TiO2 nanocomposites. The effects of titania and the surface active doping acid. The Royal Society of Chemis-try. 2015. 5 (26). 20218-20226. https://doi.org/10.1039/C4RA16121A
  15. Nadaf L.I., Venkatesh K.S., Gadyal M.A., Afzal M. Poly-aniline-Tin oxide nanocomposites: synthesis and characterization. IOSR Journal of Applied Chemistry. 2016. 9 (2). 55-61.
  16. Shukla Sa.K., Shukla Su K., Govender Penny P., Agorku E. S. A resistive type humidity sensor based on crystallinetin oxide nanopar-ticles encapsulated in polyaniline matrix. Microchim Acta. 2016. 183 (2). 573-580. https://doi.org/10.1007/s00604-015-1678-2
  17. Khalameida S., Samsonenko M., Skubiszewska-Zieba J., Zakutevskyy O. Dyes catalytic degradation using modified tin(IV) oxide and hydroxide powders. Adsorption Science and Technology. 2017. 35 (9). 853-865. https://doi.org/10.1177/0263617417722251
  18. Nuno M., Ball R.J., Bowen C.R., Kurchania R., Sharma G. Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coat-ings. J. Mater. Sci. 2015. 50. 4822-4835. https://doi.org/10.1007/s10853-015-9022-0
  19. Mahadik M.A., An G.W, David S., Choi S.H., Cho M., Jang J.S. Fabrication of A/RTiO2 composite for enhanced photoelectro-chemical performance: solar hydrogen generation and dye degradation. Appl. Surf. Sci. 2017. 426. 833-843. https://doi.org/10.1016/j.apsusc.2017.07.179
  20. Patil S.M., Deshmukh S.P., Dhodamani A.G., More K.V., Delekar S.D. Different strategies for modification of titanium dioxide as heterogeneous catalyst in chemical transformations. Curr. Org. Chem. 2017. 21. 821-833. https://doi.org/10.2174/1385272820666161013151816
  21. Dulian P., Nachit W., Jaglarz J., Kanak P., Zukowski W. Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings. Optical Materials. 2019. 90. 264-272. https://doi.org/10.1016/j.optmat.2019.02.041
  22. Moharrami F., Bagheri-Mohagheghi M.-M., Azimi-Juybari H. Study of structural, electrical, optical, thermoelectric and pho-toconductive properties of S and Al co-doped SnO2 semiconductor thin films prepared by spray pyrolysis. Thin Solid Films. 2012. 520. 6503-6509. https://doi.org/10.1016/j.tsf.2012.06.075
  23. Ponja S., Sathasivam S., Chadwick N., Kafizas A., Bawaked S.M., Obaid A.Y., AlThabaiti S., Basahel S.N., Parkin I.P., Car-malt C.J. Aerosol assisted chemical vapour deposition of hydrophobic TiO2-SnO2 composite film with novel microstructure and enhanced photocatalytic activity. J. Mater. Chem. A. 2013. 1. 6271-6278. https://doi.org/10.1039/c3ta10845g
  24. Zazhigalov V.A., Wieczorek-Ciurowa K. Mechanochem-iczna aktywacja katalizatorów wanadowych. Krakow, Wydawnictwo PK, 2014. 454 s.
  25. Boldyrev V.V. Mekhanokhimia i mekhakhimicheskaya activaciya tverdykh veshchestv. Uspekhi khimii. 2006. 75 (3) 203-216.
  26. Quaresma S., André V., Fernandes A., Duarte M.T. Mech-anochemistry - a green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks. Inorganica Chimia Acta, Part 2. 2017. 55. 309-318. https://doi.org/10.1016/j.ica.2016.09.033
  27. Buyanov R.A., Molchanov V.V. Primenenie metoda mekhakhimicheskoy activaciyi v maloodkhodnykh energozberegaush-chikh teknologiyakh proizvodstva katalizatorov I nositeley. Khimich-eskaya promyshlennost. 1996. 3. 152-157.
  28. León A., Reuquen P., Garín C., Segura R., Vargas P., Zapa-ta P., Orihuela P.A. FTIR and Raman characterization of TiO2 nanopar-ticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 2017. 7 (49). https://doi.org/10.3390/app7010049
  29. Bahade S.T., Lanje A.S., Sharma S.J. Synthesis of SnO2 thin film by sol-gel spin coating technique for optical and ethanol gas sensing application. IJSRST. 2017. 3 (7) 567-575. https://doi.org/10.1016/j.physb.2017.09.112
  30. Ayeshamariam A. Synthesis, structural and optical char-acterizations of SnO2 nanoparticles. Journal on Photonics and Spintron-ics. 2013. 2 (2). 4-8.
  31. Nithiyanantham U., Ramadoss A., Kundu S. Synthesis and characterization of DNA fenced, self-assembled SnO2 nano-assemblies for supercapacitor applications. Dalton Trans. 2016. 45. 3506-3521. https://doi.org/10.1039/C5DT04920B
  32. Ivanov V.V., Sidorak I.A., Shubin A.A., Denisova L.T. Synthesis of SnO2 powders by decomposition of thermally unstable compounds. Journal of Siberian Federal University. Engineering & Tech-nologies. 2010. 2 (3). 189-213.
  33. Sheng P.-Y., Yee A., Bowmaker G.A., Idriss H. H2 Produc-tion from ethanol over Rh-Pt/CeO2 catalysts: The role of Rh for the efficient dissociation of the carbon-carbon bond. Journal of Catalysis. 2002. 208. 393-403. https://doi.org/10.1006/jcat.2002.3576
  34. Pirez C., Fang W., Capron M., Paul S., Jobic H., Dumeignil F., Jalowiecki-Duhamel L. Steam reforming, partial oxidation and oxida-tive steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Applied Catalysis A. 2016. 518. 78-86. https://doi.org/10.1016/j.apcata.2015.10.035
  35. Mattos L.V., Noronha F.B. Hydrogen production for fuel cell applications by ethanol partial oxidation on Pt/CeO2 catalysts: the effect of the reaction conditions and reaction mechanism. Journal of Catalysis. 2005. 233. 453-463. https://doi.org/10.1016/j.jcat.2005.04.022
  36. Cai W., Wang F., Zhan E.,. Van Veen A.C, Mirodatos C., Shen W. Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. Journal of Catalysis. 2008. 257. 96-107. https://doi.org/10.1016/j.jcat.2008.04.009
  37. Khalameida S.V. Sydorchuk V.V., Zazhigalov V.O. Le-boda R., Skubishevska-Zieba Ya. Mekhanokhimichna, microkhvylova ta ultrazvukova degradaciya safraninu v prysutnosti riznykh form diox-ydu tytanu. Khimia, fizyka ta tekhnologia poverkhni. 2011. 2 (3). 235-241.

Current issue

2020 - Vol.29

Content of the issue

Download article