Catalysis and petrochemistry
Theoretical and scientific-technical collection
ISSN 2707-5796 (Online), ISSN 2412-4176 (Print)
Ukrainian|  English

Kataliz ta naftohimia: 2020, Vol.30, 90-96.

https://doi.org/10.15407/kataliz2020.30.090

Thermogravimetric study of nickel-containing zeolites deactivated in glucose conversion


L.K. Patrylak, V.A. Povazhnyi, S.V. Konovalov, О.P. Pertko, A.V. Yakovenko.



V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine, Ukraine, 02094 Kyiv, 1 Murmanska Str., tel./fax: 044 292-01-39
E-mail: lkpg@ukr.net


ABSTRACT


Heterogeneous catalytic conversion of carbohydrates in order to obtain platform- substances over acid catalysts is an important modern area of research. However, today the problem of deactivation of solid catalysts in these processes is poorly understood. The aim of the work was thermogravimetric study of nickel-containing (5% wt.) hydrogen forms of zeolites Y, ZSM-5 and M deactivated in glucose dehydration. The peculiarities of two processes, including endothermic process of dehydration and the exothermic process of carbonaceous deposits combustion, were investigated by the method of ther-mogravimetry. The latter on the DTA curves is represented by two (three) exothermic maxima in the temperature range of 325-450 oC. Among the studied samples only for zeolite Y there is a phase transi-tion without mass change in the range of 900-1000 oC. The mass loss of the samples due to dehydra-tion and combustion of coke is 30, 20 and 15% for NiHY, NiHM and NiHZSM-5, respectively, of which carbonaceous deposits account for 18, 10 and 10% of the mass. A similar rate of dehydration and burnout of deposits was observed in the case of catalysts based on wide-porous zeolites, as well as a lower rate of burnout in the case of medium-porous zeolite ZSM-5. The calculated activation energy of deposition combustion, which is 25-50 kJ/mol, is caused by the proceeding of low-temperature oxi-dation catalyzed by nickel-containing zeolites. It was found that the bulk of coke deposits burns up to 450 oC, which indicates the formation of only coke precursors, which, apparently, are humin com-pounds. They do not undergo further processes of transformation and compaction.


KEYWORDS


nickel-containing zeolites, thermogravimetry, combustion of deposits, dehydration, coke precursors.

REFERENCES


1. Bartholomew C.H. Mechanism of catalyst deactivation. Appl. Catal. A.: Gen. 2001. V. 212. P. 17-60
https://doi.org/10.1016/S0926-860X(00)00843-7

2. Guisnet M., Magnoux P. Organic chemistry of coke formation. Appl. Catal. A: Gen. 2001. V. 212. P. 83-96.
https://doi.org/10.1016/S0926-860X(00)00845-0

3. Argyle M.D., Bartholomew C.H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts. 2015. V. 5, 145-269.
https://doi.org/10.3390/catal5010145

4. Patrylak К.І., Patrylak L.К., Pertko O.P., Konovalov S.V., Okhrimenko M.V., Voloshyna Yu.G. Current Catalysis,. 2016. V. 5. P. 108-115.
https://doi.org/10.2174/2211544705666160322235846

5. Patrylak L.K., Pertko O.P. Peculiarities of activity renovation of zeolite catalysts coked in hexane cracking. Chem. Chem. Technol. 2018. V. 12, No. 4. P. 538-542.
https://doi.org/10.23939/chcht12.04.538

6. Esteban J., Yustos P., Ladero M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Overview. Catalysts. 2018. V. 8. P. 637-678.
https://doi.org/10.3390/catal8120637

7. Chernyshev V.M., Kravchenko O.A., Ananikov V.P. Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russ. Chem. Rev. 2017. V. 86 (5). P. 357-387.
https://doi.org/10.1070/RCR4700

8. Prudius S.V., Visloguzova V.N., Brei V.V. Konversija D-fruktozy v etyllactat na SnO2-vmisnyh katalizatorah. Khimia, fizyka ta tekhnologia poverkhni. 2019. Т. 10. № 1. С. 67-74. [in Ukranian]
https://doi.org/10.15407/hftp10.01.067

9. Sharanda M.E., Levytska S.I., Prudius S.V., Mylin A.M., Brei V.V. Doslidzennja hidrogenolizy glukozy na Cu-oksydah. Khimia, fizyka ta tekhnologia poverkhni. 2018. V. 9, № 2. P. 134-144. [in Ukrainian]
https://doi.org/10.15407/hftp09.02.134

10. Kukhar V.P. Bioresyrsy - potentsialna syrovyna dlia promyslovogo organichnogo synthezu. Kataliz i neftekhimia. 2007. N 15. P.1-15. [in Ukrainian].

11. Levytska S.I. Doslidzhennia isomeryzatsii gliukozy u fruktozu na MgO-ZrO2 katalizatori v protochnomu rezhymi. Kataliz i neftekhimia. 2017. №26. P. 46-52. [in Ukrainian].

12. Molodyi D.V., Melnychuk O.V., Povazhnyi V.A. Kyslotno-osnovni nanokatalizatory hydrolizu komponentiv biomasy u vodnomu seredovustchi. Kataliz i neftekhimia. 2018. N 27. P.54-63. [in Ukrainian].

13. Wrigstedt P., Keskiväli J., Leskelä M., Repo T. The Role of Salts and Brønsted Acids in Lewis Acid‐Catalyzed Aqueous‐Phase Glucose Dehydration to 5‐Hydroxymethylfurfural. ChemCatChem. 2015. V. 7. P. 501-597.
https://doi.org/10.1002/cctc.201402941

14. Patrylak L., Pertko O., Povazhnyi V., Yakovenko A., Konovalov S. Glucose conversion over nickel-containing zeolites in aqueous medium. Book of Abstracts of Intern Conf. "Nanotechnology and nanomaterials (NANO-2020)". Lviv, 26-29 August, 2020, P. 387.

15. Astrelin I.M., Koncevoj A.L., Manchuk N.M., Kostenko A.B. Sintez ftorgidroksidkarbonat apatitov i raschet kineticheskih parametrov ih termoliza. Russ. J. Inorg. Chem. 1989,34 (10). P. 2587-2592 [in Russian].

16. Afzal M., Yasmeen G., Saleem M., Butt P.K., Khattak A.K., Afzal J. TG and DTA Study of the Thermal Dehydration of Metal-exchanged Zeolite-4A Samples. J. Therm. Anal. Calorim. 2000. V. 62. P. 721-727.
https://doi.org/10.1023/A:1010143602283

17. Mansouri N., Rikhtegar N., Panahi H.A., Atabi F., Shahraki B.K. Porosity, characterization and structural properties of natural zeolite - clinoptilolite - as a sorbent. Env. Protec. Eng. 2013. V. 39. P. 149-152.
https://doi.org/10.37190/epe130111

18. Vasylechko V., Hrustchuk H., Rubai H., Kalychak I., Lomnytska I. Zakarpatskyi klynoptylolit iak sorbent dlia vyluchennia slidovyh kilkostei kobaltu (II) metodom tverdofazovoi ekstraktsii. Visnyk Lvivskogo universytetu. Ser. Himichna. Vyp. 58, N 1, P. 198-208. [in Ukrainian].

19. Miliovych S.S. Klunoptylolit sokyrnytskogo rodovystcha: modyfikatsia, vlastyvosti, optymizatsia parametriv, praktychne vykorystannia: dys. kand. chim. nauk, za spetsialnistiu 02.00.01 - neorganichna khimia. Uzgirodskyi natsionalnyi universytet. Uzgorod, 2020. [in Ukrainian].

20. Gonçalves M.L.A., Vieira M.D., Mota D.A.P., Cerqueira W.V. Differential thermal analysis of a zeolite Y crystalline structure in a catalyst. J. Thermal. Anal. Calorimetry. 2010. V. 101 (3). P. 965-971
https://doi.org/10.1007/s10973-009-0631-1

21. Sereda B.P., Belokon K.V., Bolikon Iu.O., Kruglajk I.V. Model mekhanizmu katalitychnukh reaktsii glybokogo okysnennja oksydu vygletsiu. Mathematychne modeliuvannia. 2018. Т. 38, N1. P. 62-68. [in Ukrainian]

22. Pertko O.P. Modification of zeolite external surface as a factor influencing the deactivation of a basic catalyst and the selectivity in hydrocarbon conversions.- Qualifying scientific work as a manuscript. Thesis for a candidate's degree (PhD) in chemical science on speciality 02.00.13 "Petrochemistry and coal chemistry". -V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, 2020 [in Ukrainian].

23. Henriques C.A., Santos J.O.J., Polato C.M.S., Murta Valle M.L., Aguiar E.F.S., Monteiro J.L.F. A study on the deactivation of USY zeolites with different rare earth contents. Braz. J. Chem. Eng. 1998. 15(2).
https://doi.org/10.1590/S0104-66321998000200003

24. Yamaguchi A., Jin D., Ikeda T., Sato K., Hiyoshi N., Hanaoka T., Mizukami F., Shirai M. Deactivation of ZSM-5 zeolite during catalytic steam cracking of n-hexane. Fuel Processing Technology. 2014. V. 126. P. 343-349.
https://doi.org/10.1016/j.fuproc.2014.05.013

25. Sangregorio, A., Guigo, N., van der Waal, J.C., Sbirrazzuoli, N. All 'green' composites comprising flax fibres and humins' resins. Composites Science and Technology. 2019. V. 171. P. 70-77.
https://doi.org/10.1016/j.compscitech.2018.12.008

26. Tosi P., van Klink G.P., Celzard A., Fierro V., Vincent L., de Jong E., Mija A. Auto‐Crosslinked Rigid Foams Derived from Biorefinery Byproducts. ChemSusChem. 2018. V. 11. P. 2797-2809.
https://doi.org/10.1002/cssc.201800778

Current issue

2020 - Vol.30

Content of the issue

Download article