Catalysis and petrochemistry
Theoretical and scientific-technical collection
ISSN 2707-5796 (Online), ISSN 2412-4176 (Print)
Ukrainian|  English

Kataliz ta naftohimia: 2020, Vol.30, 38-42.

https://doi.org/10.15407/kataliz2020.30.038

Vapour-phase conversion of methyl lactate into lactide over TiO2/SiO2 catalyst at the lowered pressure


А.М. Vаrvarin, S.І. Levytska, А.М. Mylin, V.V. Brei



Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine
13 General Naumov Str., Kyiv, 03164, Ukraine
E-mail: brei@ukr.net


ABSTRACT


Now polylactide (PLA) widely use as biodestructive packing material. Usually monomeric lactide produce from lactic acid. Also, methyl (ethyl) lactate could be used for lactide obtaining via its vapour-phase condensation on TiO2/SiO2 catalyst at 2600C in N2 carrier-gas flow. However, at that it is necessary to heat carrier-gas to the reaction temperature. In this communication the results on methyl lactate vapour condensation into lactide with the lowered pressure of 100-150 mbar, without carrier-gas, are presented. Supported TiO2/SiO2 catalyst with 5 wt.% titania content has been prepared by impregnation of silica with Ti(OC4H9)4. After calcination at 5000C prepared catalyst has amorphous mesoporous structure with 335 m2/g surface area and 0.83 сm3/g pore volume. The catalytic experiments were performed in such way. Liquid methyl lactate was dosed into the evaporator (2500C) and further in the flowing reactor (2600C) under pressure of 100 mbar that produced by vacuum pump. Load on a catalyst was varied from 25 to 55 mmol ML/(gcath). Cooled product was analyzed on Agilent 7820A chromatograph and NMR Bruker Avance-400 spectrometer. It was shown that TiO2/SiO2 catalyst provide 74% selectivity towards lactide at 50-53% methyl lactate conversion with lactide productivity of 7.8 mmol L/(gcath) at 2600C/100 mbar. The catalyst stable work is more 80 h. Main impurities are methyl lactoillactate, 1-methoxyethanol and 1,1-dimethoxyethane.


KEYWORDS


lactide, methyl lactate, supported catalyst, titanium dioxide.

REFERENCES


1. Gupta A.P., Kumar V. New emerging trends in synthetic biodegradable polymers -polylactide: a critique. European Polymer Journal 2007. 43(10). 4053-4074.
https://doi.org/10.1016/j.eurpolymj.2007.06.045

2. Suzuki S., Ikada Y. Medical Applications. Poly(lactic acid): synthesis, structures, properties, processing and applications. Hoboken, New Jersey: John Wiley & Sons, Inc., 2010. 528.
https://doi.org/10.1002/9780470649848.ch27

3. Hamad K., Kaseem M., Yang H.W., Deri F., Ko Y.G. Properties and medical applications of polylactic acid: A review. eXPRESS Polymer Letters. 2015. 9(5). 435-455.
https://doi.org/10.3144/expresspolymlett.2015.42

4. Grand View Research. Lactic acid and poly lactic acid (PLA) market size is projected to reach $4,312.2 million and $2,169.6 million respectively by 2020: URL: https://www.globenewswire.com/news-release/2016/06/30/852671/0/en/Lactic-Acid-And-Poly-Lactic-Acid-PLA-Market-Size-Is-Projected-to-Reach-4-312-2-Million-And-2-169-6-Million-Respectively-By-2020-Grand-View-Research-Inc.html. (04.02.20).

5. Pat. 5247058. C08G 63/08, CO7D 319/12. Gruber P.R., Hall E.S Kolstad J.J., Iwen M.L., Benson R.D., Borchardt R.L. Continuous process for ma-nufacture of lactide polymers with controlled optical purity. USA. Publ. 21.09.1993.

6. Pat. 6326458 B1. C08G 63/08, C08G 63/82, C08G 63/91, C07D 319/12. Gruber P.R, Hall E.S., Kolstad J.J., Iwen M.L., Benson R.D., Borchardt R.L. Continuous process for the manufacture of lactide and lactide polymers. USA. Publ. 04.12.2001.

7. Pat. 7488783 B2. C08G 63/08. Coszach Ph., Bogaert J.-Ch., Van Gansberghe F. Method for the production of polylactide from a solution of lactic acid or one of the dervatives thereof. USA. Publ. 10.02.2009.

8. Pat. 5247059. C08G 63/08, CO7D 319/12. Gruber P.R, Hall E.S., Kolstad J.J., Iwen M.L., Benson R.D., Borchardt R.L. Continuous process for the manufacture of a purified lactide from esters of lactic acid. USA. Publ. 21.09.1993.

9. Eur. pat. 2264020 A1. C07D 319/12. Chang J.-S., Hwang Y.-K., Lee J.-H., Lee J.-M., Jung M.-H. Catalyst for direct conversion of esters of lactic acid to lactide and the method for producing lactide the same. Publ. 22.12.2010.

10. Varvarin. A.M., Levytska S.I., Brei V.V. Parofazna kondensatsiia etyllaktatu do laktydu na SnO2/SiO2 katalizatori. Dopovidi Natsionalnoi akademii nauk Ukrainy 2018. 1. 73-79.
https://doi.org/10.15407/dopovidi2018.01.073

11. Varvarin. A.M., Levytska S.I., Brei V.V. Konversiia etyllaktatu v laktyd na kyslotnomu SnO2/SiO2-katalizatori. Kataliz ta naftohimia. 2018. 27. 19-24. [in Ukrainian].

12. Varvarin. A.M., Levytska S.I., Glushchuk Ya.R., Brei V.V. Parofaznyi syntez laktydu z etyllaktatu na TiO2/SiO2-katalizatori. Ukrainskyi khimichnyi zhurnal. 2019. 85(7). 31-37. [in Ukrainian].
https://doi.org/10.33609/0041-6045.85.7.2019.31-37

13. Patent 139671. C07D 319/12, C07C 69/75(2006.01), C07C 67/00. Brei V.V., Varvarin A.M., Levytska S.I., Glushchuk Ya.R., Mylin A.M. Sposib oderzhannia laktydu cherez parofaznu kondensatsiiu etyl-laktatu. Ukraina. Date of publication 10.01.2020. Bulletin 1. [in Ukrainian].

14. Tanabe К. Tverdye kisloty i osnovanyia. Moskva. Mir, 1973. 184. [in Russian].

Current issue

2020 - Vol.30

Content of the issue

Download article