Catalysis and petrochemistry
Theoretical and scientific-technical collection
ISSN 2707-5796 (Online), ISSN 2412-4176 (Print)
Ukrainian|  English

Kataliz ta naftohimia: 2021, Vol.31, 1-16

https://doi.org/10.15407/kataliz2021.31.001

Mechanochemystry as advanced methodology in green chemistry for applied catalysis


V.A. Zazhigalov1, K. Wieczorek-Ciurowa2, O.V.Sachuk1, I.V.Bacherikova1



1Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, gen. Naumov str., 13, Kyiv-164, 03164, Ukraine
2Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska str. 24, 31155 Cracow, Poland
Е-mail: zazhigal@ispe.kiev.ua, vazazh@ukr.net, kwc@ok.edu.pl


ABSTRACT


In this survey we have assessed how mechanochemistry techniques comply with the aims of Green Chemistry to minimise the use of environmentally damaging reactants and unwanted by-products. In the publications the preparation of vanadium-phosphorus oxides as industrial catalysts for maleic anhydride production from n-butane and perspective catalysts of phthalic anhydride manufacture by direct n-pentane oxidation were analyzed. It is shown that mechanochemical activation and synthesis reduces the amount of harmful waste used in the production of the catalyst and increases its effectiveness. Improvement of a catalyst’s properties, help limit production of harmful emissions such as carbon oxides and hydrocarbons. It was established that mechanochemical treatment can by successfully used in the process of industrial vanadium-phosphorus oxide catalysts modification or in the process of introduction in its composition of additives which lead to increase of activity and selectivity of hydrocarbons oxidation. The possibility of the mechanochemistry use in the vanadium-titanium oxide catalysts preparation which are the base catalysts in industrial phthalic anhydride production from o-xylene was determined. It was established that mechanochemical treatment of the vanadium and titanium oxides mixture permits to delete the nitrogen oxides emission in atmosphere and prepared catalysts demonstrate the same phthalic anhydride yield but at low reraction temperature. Catalysts, manufactured by mechanochemical treatment (on the base of molybdenum oxide), provide new techniques for producing compounds as exemplified by the direct oxidation of benzene to form phenol which can replace industrial two-step process from cumene or proposed process of benzene oxidation by N2O. Mechanochemistry treatment could produce catalysts which eliminated the need to use highly toxic nitrogen oxides as reducing agents. The article describes activating Cu-Ce-O catalysts which reduce the temperature of the process for removing carbon monoxide from exhaust gases and as a method for purifying hydrogen u sed in fuel cells. Finally, there is a description of mechanochemically treated catalysts, containing metals and supported on stainless steel supports which are used to remove aromatic hydrocarbons from water sewers.


KEYWORDS


green chemistry, catalysis, oxide catalysts, mechanochemistry

REFERENCES


1. Armor J.N. Global overview of catalysis. United States of America. Appl. Catal. A: General. 1996. v. 139. No 1-2. pp. 217-228. 

https://doi.org/10.1016/0926-860X(96)00005-1

2. Gallei E. and Schwab E. (1999) Development of technical catalysis. Catal. Today. 1999. v. 51, No 3-4. pp. 535-546.

https://doi.org/10.1016/S0920-5861(99)00039-5

3. Handbook of industrial catalysts. Fundamental and applied catalysts. (M.Twigg, M.Spencer - Eds.). N.-Y., Dortrecht: Springer. 2011. 482 P. ISBN 978-0-387-49962-8

4. Courty P.R. and Chauvel A. Catalysis, the turntable for a clean future. Catal. Today. 1996. v. 29, No 1-4. pp. 3-15.

https://doi.org/10.1016/0920-5861(95)00253-7

5. Fritz A. and Pitchon V. The current state of research on automotive lean NOx catalysis. Appl. Catal. B: Environmental. 1997. v. 13, No 1. pp. 1-25.

https://doi.org/10.1016/S0926-3373(96)00102-6

6. Sheldon R.A. and Downing R.S. Heterogeneous catalytic transformation for environmentally friendly production. Appl. Catal. A: General. 1999. v. 189. No 2. pp.163-183.

https://doi.org/10.1016/S0926-860X(99)00274-4

7. Blaer H.U., Studer M. The role of catalysis for the clean production of fine chemicals. Appl. Catal. A: General. 1999. v.189. No 2. pp. 191-204.

https://doi.org/10.1016/S0926-860X(99)00276-8

8. Tanabe K. and Holderich W.F. Industrial application of solid acid-base catalysts. Appl. Catal. A: General. 1999. v. 181.No 2. pp. 399-434.

https://doi.org/10.1016/S0926-860X(98)00397-4

9. Armor J.N. Striving for catalytically green processes in the 21st century. Appl. Catal. A: General. 1999. v.189. No 2. pp.153-162.

https://doi.org/10.1016/S0926-860X(99)00273-2

10. Pajonk G.M. Some catalytic applications of aerogels for environmental purposes. Catal. Today. 1999. v. 52. No 1. pp. 3-13.

https://doi.org/10.1016/S0920-5861(99)00057-7

11. Forzatti P. Environmental catalysis for stationary applications. Catal. Today. 2000. v. 62, No 1. pp. 51-65.

https://doi.org/10.1016/S0920-5861(00)00408-9

12. Shelef M. and McCabe R.W. Twenty-five years after introduction of automotive catalysts: what next? Catal. Today. 2000. v. 62. No 1. pp.35-50.

https://doi.org/10.1016/S0920-5861(00)00407-7

13. Trong On D., Desplantier-Giscard O., Danumah C. and Kaliaguine S. Perspectives in catalytic applications of mesostructured materials. Appl. Catal., A: General. 2001. v. 222. No 1-2. pp. 299-357.

https://doi.org/10.1016/S0926-860X(01)00842-0

14. Berndt M. and Landri P. An overview about Engelhard approach to non-standard environmental catalysis. Catal. Today. 2002. v. 75. No 1-4. pp. 17-22.

https://doi.org/10.1016/S0920-5861(02)00038-X

15. Centi G., Ciambelli P., Perathoner S. and Russo P. Environmental catalysis: trends and outlook. Catal. Today. 2002. v. 75. no 1-4. pp. 3-15.

https://doi.org/10.1016/S0920-5861(02)00037-8

16. Centi G. and Perathoner S. Catalysis and sustainable (green) chemistry. Catal. Today. 2003. v. 77, No 4. pp. 287-297.

https://doi.org/10.1016/S0920-5861(02)00374-7

17.Centi G., Perathoner S. and Rak Z.S. Reduction of greenhouse gas emissions by catalytic processes. Appl. Catal. B: Environmental. 2003. v. 41.No 1-2. pp. 143-155.

https://doi.org/10.1016/S0926-3373(02)00207-2

18. Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC). 1997. L.7, Add.1. Bonn.

https://unfccc. int.

19. Kotel'nikov G.R. and Kachalov D.V. The manufacturing and use of catalysts for petrochemistry. The state of the art and problems. Kinetics and Catalysis. 2001. v. 42. No 5. pp. 718-726.

https://doi.org/10.1023/A:1012336117747

20. Schmidt F. New catalyst preparation technologies - observed from an industrial viewpoint. Appl. Catal. A: General. 2001. v. 221. No 1-2. pp.15-21.

https://doi.org/10.1016/S0926-860X(01)00802-X

21. Campanati M., Fornasari G. and Vaccari A. Fundamental in the preparation of heterogeneous catalysts. Catal. Today. 2003. v. 77. No4. pp. 299-314.

https://doi.org/10.1016/S0920-5861(02)00375-9

22. Encyclopedia of Catalysis. (Horvath I.T. - Ed.). N.Y.: Wiley and Sons. 2003. v. 1-6. 4772 P.

23. Handbook of Heterogeneous Catalysis. (Ertl G., Knozinger H., Schuth F. and Wietkamp J. Eds). N.Y.: Wiley-VCH. 2008. v. 1-8. 4270 P.

24. Pasquon I. New processes and perspectives in the field of heterogeneous oxidation catalysis in relation to other methods of oxidation. Catal. Today. 1987. v. 1. No 3. pp. 297-333.

https://doi.org/10.1016/0920-5861(87)80013-5

25. Nojiri N. and Misono M. Recent progress in catalytic technology in Japan - A supplement. Appl. Catal. A: General. 1993. v. 93, No 2. pp. 103-122.

https://doi.org/10.1016/0926-860X(93)85187-T

26. Clavel A., Delmon B. and Holderich W.F. New catalytic processes developed in Europe during the 1980's. Appl. Catal., A: General. 1994. v. 115, No 2. pp. 175-217.

https://doi.org/10.1016/0926-860X(94)80353-6

27. Misono M. and Inui T. New catalytic technologies in Japan. Catal. Today. 1999. v. 51. No 3-4. pp.369-375.

https://doi.org/10.1016/S0920-5861(99)00026-7

28. Armor J.N. New catalytic technology commercialized in the USA during the 1990s. Appl. Catal. A: General. 2001. v. 222.No 1-2. pp. 407-426.

https://doi.org/10.1016/S0926-860X(01)00846-8

29. Glebov L.S., Zakirova A.G., Tret'yakov V.F., Burdeinaya T.N. and Akopova G.S. State of the art research of catalytic conversion of NOx into N2. Petroleum Chem. 2002. v. 42. No 2. pp.143-172.

30. Rossini S. The impact of catalytic materials on fuel reformulation. Catal. Today. 2003. v. 77, No 4. pp. 467-484.

https://doi.org/10.1016/S0920-5861(02)00386-3

31. Setoyama T. Acid-base bifunctional catalysis: An industrial viewpoint. Catal. Today. 2006. v. 116. No 2. pp. 250-262.

https://doi.org/10.1016/j.cattod.2006.01.031

32. Kochloefl K. Present and future trends in industrial heterogeneous catalysis. Appl. Catal. A: General. 1999. v. 185. No2. pp. N10-N14.

33. Martino G. (2000) Catalysis for oil refining and petrochemistry, recent developments and future trends. Stud. Surf. Sci. Catal. 2000. v.130. pp. 83-103.

https://doi.org/10.1016/S0167-2991(00)80946-5

34. Somorjai G.A. and McCrea K. Roadmap for catalytic science in the 21st century: a personal view of building the future on past and present accomplishments. Appl. Catal. A: General. 2001. v. 222. No 1-2. pp. 3-18.

https://doi.org/10.1016/S0926-860X(01)00825-0

35. Emig G. and Liauw M.A. New reaction engineering concepts for selective oxidation reactions. Topics in Catal. 2002. v.21. No 1-3. pp. 11-24.

https://doi.org/10.1023/A:1020543729259

36. Liu C.J., Vissokov G.P. and Jang B.W.L. Catalyst preparation using plasma technologies. Catal. Today. 2002. v. 72. No 3-4. pp. 173-184.

https://doi.org/10.1016/S0920-5861(01)00491-6

37. Kamat P.V. and Meisel D. Nanoparticles in advanced oxidation processes. Curr. Opin. Colloid Interface Sci. 2002. v. 7. No 5-6. pp.282-287.

https://doi.org/10.1016/S1359-0294(02)00069-9

38. Tilley T.D. Molecular design and synthesis of heterogeneous and single-site, supported catalysts. J. Molec. Catal. A: Chemical. 2002. v.182-183. pp. 17-34.

https://doi.org/10.1016/S1381-1169(01)00461-7

39. Marcilly C. Present status and future trends in catalysis for refining and petrochemicals. J. Catal. 2003. v. 216. No 1-2. pp. 47-62.

https://doi.org/10.1016/S0021-9517(02)00129-X

40. Kaspar J., Fornasiero P. and Hickey N. Automotive catalytic converters: current status and some perspectives. Catal. Today. 2003. v.77. No 4. pp.419-449.

https://doi.org/10.1016/S0920-5861(02)00384-X

41. Corma A. and Garcia H. Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 2003. v.103. No 10. pp.4307-4365.

https://doi.org/10.1021/cr030680z

42. Dautzenberg F. and Angevine P.J. Encouraging innovation in catalysis. Catal. Today. 2004. v.93-95. pp. 3-16.

https://doi.org/10.1016/j.cattod.2004.05.019

43. Camp C.V. The future of the petrochemical industry in Europe. Catal. Today. 2005. v. 106. No 1-4. pp.15-29.

https://doi.org/10.1016/j.cattod.2005.07.175

44. Brazdil J.F. Strategies for the selective catalytic oxidation of alkanes. Topics Catal. 2006. v.38. No 4. pp. 289-294.

https://doi.org/10.1007/s11244-006-0027-4

45. Wieczorek-Ciurowa K., and Gamrat K. Mechanochemical syntheses as an example of green processes. J. Therm. Anal. Cal. 2007. v. 88. No 1. pp. 213-217.

https://doi.org/10.1007/s10973-006-8098-9

46. Shirokov Yu.G. Mechanochemistry in catalysts technology (Russ.). Ivanovo: Chem. Techn. Univ. Ivanovo. 2005. 350 P.

47. Molchanov V.V. and Buyanov R.A. Mechanochemistry of catalysts. Russ. Chem. Rev. 2000.v. 69, No 5. pp. 435-450.

https://doi.org/10.1070/RC2000v069n05ABEH000555

48. Molchanov V.V. and Buyanov R.A. Scientific grounds for the application of mechanochemistry to catalyst preparation. Kinetics and Catalysis. 2001. v.42. No 3. pp. 366-374.

https://doi.org/10.1023/A:1010465315877

49. Zazhigalov V.A., Wieczorek-Ciurowa K. Mechanochemiczna aktywacja katalizatorów wanadowych. Krakow: Wydawnictwo PK. 2015. 454 P. ISBN 978-83-7242-842-4.

50. Avvakumov E., Senna M. and Kosowa N. Soft mechanochemical synthesis: A basis for new chemical technologies. Boston: Kluwer Acad. Publ. 2001. 207 P.

51. Baláž P. Mechanochemistry in nanoscience and minerals engeineering. Berlin: Springer. 2008. 413 P.

52. Baláž P., Achimovicová M., Baláž M., Billik P., Cherkezova-Zheleva Z., Manuel Criado J., Delogu R., Dutková E., Gaffet E., Jose Gotor E., Kumar R., Mitov I., Rojac T., Senna M., Streleckii A., Wieczorek-Ciurowa K., Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 2013. v. 42. No 18. pp. 7571-7637.

https://doi.org/10.1039/c3cs35468g

53. Zazhigalov V.A., Haber J., Stoch J., Pyatnitskaya A.I., Komashko G.A. and Belousov V.M. Properties of cobalt-promoted (VO)2P2O7 in the oxidation of butane. Appl. Catal. A: General. 1993. v. 96, No 2. pp.135-150.

https://doi.org/10.1016/0926-860X(90)80006-Z

54. Zazhigalov V.A (1992) Phosphates of vanadium as catalysts for partial oxidation of hydrocarbons С4. Catalysis and Catalysts (Russ). 1992. V. 28. pp.3-19.

55. Vanadyl pyrophosphate catalysts. (Centi G.- Ed.). Catal. Today. 1993. v.16, No 1. pp. 1-153.

56. Albonetti S., Cavani F., and Trifiro F. (1996) Key aspects of catalyst design for the selective oxidation of paraffins. Catal. Rev. Sci. Eng. 1996. v.38. No 4. pp. 413-438

https://doi.org/10.1080/01614949608006463

57. Hodnett B.K. Heterogeneous catalytic oxidation: Fundamental and technological aspects of the selective and total oxidation of organic compounds. N.-Y.: Wiley and Sons. 2000. 360 P.

58. Centi G., Cavani F. and Trifiro F. Selective oxidation by heterogeneous catalysis. N.Y.: Kluwer Acad. 2001. 505 P.

https://doi.org/10.1007/978-1-4615-4175-2

59. Zazhigalov V.A., Haber J., Stoch J., Bogutskaya L.V. and Bacherikova I.V. Mechanochemistry in preparation and modification of vanadium catalysts. Stud. Surf. Sci. Catal. 1996. v.101. pp. 1039-1047.

https://doi.org/10.1016/S0167-2991(96)80315-6

60. Zazhigalov V.A., Haber J., Stoch J., Kharlamov A.I., Bacherikova I.V. and Kowal A. Influence of the mechanochemical treatment on the reactivity of V-containing oxide systems. Solid State Ionics. 1997. v. 101-103. pp. 1257-1262.

https://doi.org/10.1016/S0167-2738(97)00211-7

61. Zazhigalov V.A., Kharlamov A.I., Bacherikova I.V., Komashko G.A., Khalameida S.V., Bogutskaya L.V., Byl' O.G., Stoch J. and Kowal A. Changes in structure and catalytic properties of V2О5 caused by mechanochemical treatment. Theor. Experim. Chem. 998. v. 34. No 2. pp. 162-164.

https://doi.org/10.1007/BF02764462

62. Su D.S., Roddatis V., Willinger M., Wienberg G., Kitzelmann E., Schlogl R. and Knozinger H. (2001) Tribochemical modification of the microstructure of V2O5. Catal. Lett. 2001. v. 74. No 3-4. pp. 169-175.

https://doi.org/10.1023/A:1016689231883

63. Higgins R. and Hutchings G.Y. Production of maliec acid and anhydride. USA Pat. 4317777. 1982. Imper. Chem. Ind. Ltd., IC3 C07D 307/60.

64. Hanson C.B. and Harrison C.R. Production of catalysts. Europ. Pat. 0098065. 1983. Imper. Chem. Ind. Ltd., IC3 B01J 37/00.

65. Zazhigalov V.A., Haber J., Stoch J., Bogutskaya L.V., Bacherikova I.V. Mechanochemistry as activation method of the V-P-O catalysts for n-butane partial oxidation. Appl. Catal. A: General. 1996. v.135. No 1. pp. 155-161.

https://doi.org/10.1016/0926-860X(95)00223-5

66. Haber J., Zazhigalov V.A., Stoch J., Bogutskaya L.V., Bacherikova I.V. Mechanochemistry: the activation method of VPO catalysts for n-butane partial oxidation. Catal. Today. 1997. v. 33. No 1. pp. 39-47.

https://doi.org/10.1016/S0920-5861(96)00108-3

67. Zazhigalov V.A. (1997) Non-traditional methods to prepare and modify VPO catalysts for selective oxidation of C4-hydrocarbons. In: Proc. C4 chemistry - manufacture and use of C4-hydrocarbons. Аachen, DGMK, 1997. pp. 315-322.

68. Fait M., Kubias B., Eberle H.J., Estenfelder M., Steinike U. and Schneider M. Tribomechanical pretreatment of vanadium phosphates: structural and catalytic effects. Catal. Lett. 2000. v.68, No 1-2. pp. 13-18.

https://doi.org/10.1023/A:1019042311089

69. Yamazoe N., Morishige H., Tamaki J. and Miura N. Role of amorphous phase and its modification in V-P-O catalysts for maleic anhydride synthesis from butane. Stud. Surf. Sci. Catal. 1992. v. 75. pp. 1979-1982.

https://doi.org/10.1016/S0167-2991(08)64205-6

70. Ruiz P., Bastians Ph., Caussin L., Reuse R., Daza L., Acosta D. and Delmon B. New Aspects of the Cooperation between Phases in Vanadium Phosphate Catalysts. Catal. Today. 1993. V. 16. No 1. pp. 99-111.

https://doi.org/10.1016/0920-5861(93)85010-W

71. Cornaglia L., Carrara C., Petunchi J. and Lombardo E. The nature of the Cobalt Salt affects the Catalytic Properties of Promoted VPO. Stud. Surf. Sci. Catal. 2000. v.130. pp. 1727-1732.

https://doi.org/10.1016/S0167-2991(00)80450-4

72. Carrara C., Irusta S., Lombardo E., and Cornaglia L. Study of the Co-VPO interaction in promoted n-butane oxidation catalysts. Appl. Catal. A: General. 2001. 217. No 1-2. pp.275-286.

https://doi.org/10.1016/S0926-860X(01)00615-9

73. Zazhigalov V.A. (2002) Effect of bismuth additives on the properties of vanadium. -phosphorus oxide catalyst in the partial oxidation of n-pentane. Kinetics and Catal. 2002. v. 43. No 4. pp. 514-521.

https://doi.org/10.1023/A:1019827002097

74. Nikolov V., Klissurski D. and Anastasov A. Phthalic anhydride from o-xylene catalysis: Science and Engineering. Catal. Rev. Sci. Eng. 1991. v. 33. No 3-4. pp. 319-374.

https://doi.org/10.1080/01614949108020303

75. Dias C.R., Portela M.F. and Bond G.C. Synthesis of phthalic anhydride: Catalysts, kinetics, and reaction modeling. Catal. Rev. Sci. Eng. 1997. v. 39. No3. pp. 169-207.

https://doi.org/10.1080/01614949709353776

76. Grzybowska-Swierkosz B. Vanadia-titania catalysts for oxidation of o-xylene and other hydrocarbons. Appl. Catal. A: General. 1997. V. 157. No 1-2. pp. 263-310.

https://doi.org/10.1016/S0926-860X(97)00015-X

77. Bosch H. and Janssen F. Catalytic reduction of nitrogen oxides. A review on the fundamentals and technology. Catal. Today. 1988. v. 2. No 4. pp. 369-531.

78. Nojiri N., Sakai Y. and Watanabe Y. Two catalytic technologies much influence on progress in chemical development in Japan. Catal. Rev. Sci. Eng. 1995. v. 37. No 1. pp. 145-178.

https://doi.org/10.1080/01614949508007093

79. Heck R.M. Catalytic abatement of nitrogen oxides - stationary applications. Catal. Today. 1999. v. 53. No 4. pp. 519-523.

https://doi.org/10.1016/S0920-5861(99)00139-X

80. Sobalik V., Lapina O., Novgorodova O. and Mastikhin V. Interaction of vanadium with alumina and titanium during ultra-high intensity at room temperature as evidenced from 51V NMR Spectra. Appl. Catal. A: General. 1990. v. 63. No 1. pp. 191-195.

https://doi.org/10.1016/S0166-9834(00)81715-7

81. Lapina O.B., Shubin A.A. and Nosov A.V. Characterization of V2O5-TiO2 catalysts prepared by milling by ESR and solid state 1H and 51V VMR. J. Phys. Chem. B. 1999. v. 103. No 36. pp. 7579-7606.

https://doi.org/10.1021/jp991405c

82. Bulushev D.A., Kiwi-Minsker L. and Renken A. (2000) Vanadia/titania catalysts for gas phase partial toluene oxidation. Spectroscopic characterization and transient kinetics study. Catal. Today. 2000. v. 57, No 3-4. pp. 231-239.

https://doi.org/10.1016/S0920-5861(99)00331-4

83. Zazhigalov V.A., Kharlamov A.I., Depero L., Marino A., Bacherikova I.V., Khalameida S.V. and Stoch J. Effect of mechanochemical modification on the catalytic properties of the V2O5-TiO2 system. Theor. Experim. Chem. 2000. v. 36, No 1. pp. 98-102.

https://doi.org/10.1007/BF02529026

84. Sato T., Nakanishi Y., Maruyama R. and Suzuki T. Catalyst for producing phthalic anhydride. US Patent 4481304. 1984. Nippon Shokubai Kagakiu Kogyo Co Ltd. - IC3 B01J27/24.

85. Zazigalow W., Haber J., Stoch J., Charlamow A.I. and Baczerikowa I.W. (2006) Sposob wytwarzania katalizatora wanadowo-tytanowego do utleniania o-ksylenu do bezwodnika ftalowego. PL Patent 192067. 2006. Publ. 31.08.2006. WUP 08/06.

86. Busca G., Lietti L., Ramis G. and Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Appl. Catal. B: Environmental. 1998. v. 18. No 1-2. pp. 1-36.

https://doi.org/10.1016/S0926-3373(98)00040-X

87. Zazhigalov V.A., Khalameida S.V., Zaitsev Y.P. and Bacherikova IV. (2001) Direct benzene oxidation to phenol by molecular oxygen on modified MoO3. 4th World Congr. Oxid. Catal. Berlin: Dechema e.V. 2001. v. 1. pp. 291-297.

88. Chernyavsky V.S., Pirutko L.V., Uriarte A.K., Kharitonov A.S. and Panov G.I. On involvement of radical oxygen species O- in catalytic oxidation of benzene to phenol by nitrous oxide. J. Catal. 2007. v. 245. No 2. pp. 466-469.

https://doi.org/10.1016/j.jcat.2006.10.023

89. Yuranov I., Bulushev D.A., Renken A. and Kiwi-Minsker L. Benzene to phenol hydroxylation with N2O over Fe-beta and Fe-ZSM-5: Comparison of activity per Fe-site. Appl. Catal. A: General. 2007. v.319. pp. 128-136.

https://doi.org/10.1016/j.apcata.2006.11.023

90. Yang T.J. and Lunsford J.H. The role O- ions in the oxidative dehydrogenation of ethane over molybdenum oxide supported on silica gel. J. Catal. 1980. v. 63, No 2. pp.505-509.

https://doi.org/10.1016/0021-9517(80)90107-4

91. Che M., Bonneiot L., Louis C. and Kermarec M. Coordination chemistry involving oxide catalysts. Mater. Chem. Phys. 1985. v. 13. No 3-4. pp. 201-220.

https://doi.org/10.1016/0254-0584(85)90056-2

92. Serafin J.G. and Friend C.M. (1989) Inhibition of C-H and C-O bond activation by surface oxygen: stabilization of surface phenoxide in the reaction of phenol on oxygen-precovered Mo (110). J. Am. Chem. Soc. 1989. v.111. No 12. pp. 4233-4239.

https://doi.org/10.1002/chin.198940088

93. Louis C. and Che M. (1991) Activation and properties of Mo=O bonds in Mo/SiO2 catalysts. Res. Chem. Intermediates. 1991. V.15, No 1. pp. 81-98.

https://doi.org/10.1163/156856791X00138

94. Zhang S.M., Huang W.P., Qiu X.H., Li B.Q., Zheng X.C. and Wu S.H. Comparative study on catalytic properties for low-temperature CO oxidation of Cu/CeO2 and CuO/CeO2 prepare via solvated metal atom impregnation and conventional impregnation. Catal. Lett. 2002. v. 80. No 1-2. pp.41-46.

95. Jung C.R., Han J., Nam S.W., Lim T.H., Hong S.A. and Lee H.I. Selective oxidation of CO over CuO-CeO2 catalyst: effect of calcinations temperature. Catal. Today. 2004. v. 93-95. pp. 183-190

https://doi.org/10.1016/j.cattod.2004.06.039

96. Avgouropoulos G. and Ioannidis T. Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl. Catal. B: Environmental. 2006. v. 67. No 1-2. pp. 1-11.

https://doi.org/10.1016/j.apcatb.2006.04.005

97. Martinez-Arias A., Gamarra D., Fernandez-Garcia M., Wang X.Q., Hanson J.C. and Rodriguez J.A. Comparative study of redox properties of nanosized CeO2 and CuO/CeO2 under CO/O2. J. Catal. 2006. v.240. No 1. pp. 1-7.

https://doi.org/10.1016/j.jcat.2006.02.026

98. Avgouropoulos G., Ioannides T., Matralis H.K., Batista J. and Hocevar S. CuO-CeO2 mixed catalysts for selective oxidation of carbon monoxide in excess hydrogen. Catal. Lett. 2001. v. 73. No 1. pp. 33-40.

https://doi.org/10.1023/A:1009013029842

99. Kim D.H. and Cha J.E. A CuO-CeO2 mixed oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures. Catal. Lett. 2003. v. 86. No 1-3. pp.107-112.

100. Liu Y., Fu Q. and Stephanopoulos M.F. Preferential oxidation of CO in H2 over CuO-CeO2 catalysts. Catal. Today. 2004. v.93-95. pp. 241-246.

https://doi.org/10.1016/j.cattod.2004.06.049

101. Papvasiliou J., Avgouropoulos G. and Ioannidis T. In situ combustion synthsis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen. Appl. Catal. B: Environmental. 2006. v. 66. No 3-4. pp. 168-174.

https://doi.org/10.1016/j.apcatb.2006.03.011

102. Ko E.Y., Park E.D., Seo K.W., Lee H.C., Lee D. and Kim S. A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catal. Today. 2006. v. 116. No 3. pp. 377-383.

https://doi.org/10.1016/j.cattod.2006.05.072

103. Luo M.F., Ma J.M., Lu J.Q., Song Y.P. and Wang Y.J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. J. Catal. 2007. v. 246. No 1. pp. 52-59.

https://doi.org/10.1016/j.jcat.2006.11.021

104. Zazhigalov V., Stoch J., Kowal A., Mikolajczyk M., Kirillov S. and Romanova I. Aktywnosc katalizatorow Cu-Ce-O w utlenianiu tlenku wegla. - 37th Ogolnopolskie Kolokwium katalityczne. 2005. Krakow: ICSC PAN. pp. 154-155.

105. Romanova I.V., Farbun I.A., Khajnakov S.A., Kirillov S.A. and Zazhigalov V.A. (2008) Investigation of catalytic properties of materials on base of transition metals and cerium oxides. Reports of National Acad. Sci Ukraine. 2008. No 6. pp. 115-120.

106. Golunski S. and Rajara R. Catalysis at lower temperature. CATTECH. 2002. v.6. No 1. pp. 30-38.

https://doi.org/10.1023/A:1015327423050

107. Lin H.K., Chiu H.C., Tsai H.C., Chien S.H. and Wang C.B. Sythesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide. Catal. Lett. 2003. v. 88. No 3-4. pp. 169-174.

108. Taylor S.H., Hutchings G.J. and Mirzaci A.M. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. - Catal. Today. 2003. v. 84. No 3-4. pp. 113-119.

https://doi.org/10.1016/S0920-5861(03)00264-5

109. Li P., Miser D.E., Rabiei S., Yadav R.T. and Hajaligol M.R. The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B: Environmental. 2003. v. 43. No 2. pp. 151-162.

https://doi.org/10.1016/S0926-3373(02)00297-7

110. Zazhigalov V.A., Kharlamov A.I. New reaction: Catalytic selective oxidation of benzene with water oxygen at mechanochemical treatment of HC/H2O emulsion. - EuropaCat-3. Krakow: ICSC. 1997. pp. 654-655.

111. Zazhigalov V.A., Khalameida S.V., Litvin N.S., Gasior M., Vartikyan L. and Wieczorek-Ciurowa K. Mechanochemistry and mechano-catalytic processes in environmental protection. Catalysis: Fundamentals and Application. III Int. Conf., Novosibirsk: BIC SB RAS. 2007. v. 2. pp. 583-584.

112. Zazhigalov V.O., Honcharov V.V. The formation of nanoscale coating on the 12Cr18Ni10Ti steel during ion implantation. Metallofizika i Noveishie Tekhnologii. 2014. v. 36. No 6. pp. 757-766.

https://doi.org/10.15407/mfint.36.06.0757

113. Cherny, A.A., Maschenko, S.V., Honcharov, V.V., Zazhigalov, V.A. Nanodimension layers on stainless steel surface synthesized by ionic implantation and their simulation. Springer Proceedings in Physics. 2015. v.167. pp. 203-213.

https://doi.org/10.1007/978-3-319-18543-9_12

114. Honcharov V., Zazhigalov V., Sawlowicz Z., Socha R., Gurgol J. Structural, catalytic, and thermal properties of stainless steel with nanoscale metal surface layer. Springer Proceedings in Physics. 2017. v.195. pp. 355-364.

https://doi.org/10.1007/978-3-319-56422-7_26

115. Zazhigalov V.A., Honcharov V.V., Bacherikova I.V., Socha R., Gurgu J. Formation of Nanodimensional Layer of Catalytically Active Metals on Stainless Steel Surface by Ionic Implantation. Theor. Experim. Chem. 2018. v. 54 No 2. pp. 128-137.

https://doi.org/10.1007/s11237-018-9556-8

Current issue

2021 - Vol.31

Content of the issue

Download article