Catalysis and petrochemistry
Theoretical and scientific-technical collection
ISSN 2707-5796 (Online), ISSN 2412-4176 (Print)
Ukrainian|  English

Kataliz ta naftohimia: 2021, Vol.31, 17-40

https://doi.org/10.15407/kataliz2021.31.017

Side-chain Alkylation of Toluene with Methanol, Modification and Deactivation of Zeolite Catalysts of the Reaction


Yu.G.Voloshyna, O.P.Pertko



V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 50 Kharkivske Schosse, Kyiv 160, 02160, Ukraine
Е-mail: yule.v444@gmail.comm, o.pertko@gmail.com


ABSTRACT


The review deals with main aspects of the toluene methylation reaction on basic catalysts. The side reactions of decomposition of methanol to CO and H2 on strong basic sites and ring alkylation of toluene on Lewis acid sites (cations of high polarizing ability) hinder obtaining high yields of the target products – styrene and ethylbenzene. Both types of sites are necessary for the course of the target reaction. So optimizing their strength and quantity is an important prerequisite for the selectivity of the side-chain alkylation catalysts. The advantage of fojasite-based systems for this reaction was confirmed by the works of many researchers. However, the possibilities of use of zeolites of other structural types and representatives of a new generation of molecular sieves are being studied, as well as ways of modifying such materials to increase their catalytic efficiency. The main direction of modification is to regulate the balance of acidity and basicity. Effective charge of framework oxygen atoms, which determines basicity of zeolite framework, increases due to the introduction of guest compounds into the catalyst, and this effect is more significant than influence on basicity of ion exchange for cations of elements of low electronegativity. However, the role of this method of modifying in increasing the selectivity remains crucial due to potentiality to decrease the Lewis acidity of cations. Compounds of other elements and transition metals also are used for modification, as well as promotion with metallic copper and silver. Techniques are applied, but not widely, to deprive the external surface of crystallites of active sites. This method of modification is effective for slowing down their deactivation by coke. Acid sites, in particular BAS, are most often distinguished among the sites responsible for coke formation. The mechanism of coke formation in the absence of such centers is also proposed. On the whole, this issue not fully disclosed and requires a deeper study.


KEYWORDS


Side-Chain Alkylation, Ethylbenzene, Styrene, Modification of Zeolites, Basic Sites, Acid Sites, External Surface, Deactivation, Coke.

REFERENCES

1. Tanabe K., Holderich W.F. Industrial application of solid acid-base catalysts. Appl. Catal. A. 1999, V. 181. pp. 399-434.

https://doi.org/10.1016/S0926-860X(98)00397-4

2. Ordonez S., Diaz E. Basic zeolites: Structure, preparation and environmental applications. Handbook of Zeolites: Structure, Properties and Applications. New York, 2009. P. 51-66.

3. Ono Y. Bases and Base Catalysis-Heterogeneous. In Encyclopedia of Catalysis, I. Horváth (Ed.). 2010.

https://doi.org/10.1002/0471227617.eoc027.pub2

4. James D.H., Castor W.M. Styrene. Ullmann's Encyclopedia of Industrial Chemistry, 7th Edition (Electronic). Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2011. pp. 529-544.

5. Sidorenko Yu.N., Galich P.N., Gutyrya V.S. i dr. Kondensacziya toluola i metanola na sinteticheskom czeolite, soderzhashhem ionoobmenny'e kationy shhelochnogo metalla. Dokl. AN SSSR. 1967. 173. № 1. S. 132-134.

6. Sivasankar N., Vasudevan S. Alkylation of toluene by methanol over alkali exchanged zeolite-X: side chain versus ring alkylation. J. Indian Inst. Sci. 2010. 90. №2. pp. 231-243.

7. Song L., Lia Zh., Zhang R., Zhao L., Li W. Alkylation of toluene with methanol: The effect of K exchange degree on /.the direction to ring or side-chain alkylation. Catal. Commun. 2012. 19. pp. 90-95.

https://doi.org/10.1016/j.catcom.2011.12.033

8. Itoh H., Miyamoto A., Murakami Yu. Mechanism of the Side-Chain Alkylation of Toluene with Methanol. J. Catal. 1980. 64. № 1/2. pp. 284-294.

https://doi.org/10.1016/0021-9517(80)90503-5

9. Borgna A., Sepulveda J., Magni S.I., Apesteguia C.R. Active sites in the alkylation of toluene with methanol: a study by selective acid-base poisoning. Appl. Catal., A. 2004. 276. pp. 207-215.

https://doi.org/10.1016/j.apcata.2004.08.007

10. Giordano N., Pino L., Cavallaro S., Vitarelli P., Rao B.S. Alkylation of toluene with methanol on zeolites. The role of electronegativity on the chain or ring alkylation. Zeolites. 1987. 7. pp. 131-134.

https://doi.org/10.1016/0144-2449(87)90074-1

11. Dolgikh L.Yu., Stolyarchuk I.L., Strizhak P.E., Shvecz A.V., Ilin V.G. Vliyanie ionoobmennogo i impregnaczionnogo modificzirovaniya czeolita X na kataliticheskie svojstva v alkilirovanii toluola metanolom. Teoret. i eksperim. khimiya. 2006. 42. № 1. S. 33-38.

https://doi.org/10.1007/s11237-006-0015-6

12. Wieland W.S., Davis R.J., Garces J.M. Side-Chain Alkylation of Toluene with Methanol over Alkali-Exchanged Zeolites X, Y, L and Beta. J. Catal. 1998. 173. pp. 490-500.

https://doi.org/10.1006/jcat.1997.1952

13. Freeman J.J., Unland M.L. Laser Raman study of benzene adsorption on alkali metal X and Y zeolites. J. Catal. 1978. 54. № 2. pp. 183-196.

https://doi.org/10.1016/0021-9517(78)90041-6

14. Ahn J.H., Kolvenbach R., Al-Khattaf S.S., Jentys A., Lercher J.A. Methanol Usage in Toluene Methylation with Medium and Large Pore Zeolites. ACS Catal. 2013. 3. № 5. pp. 817-825.

https://doi.org/10.1021/cs4000766

15. Halych P.M., Hutyria V.S., Sydorenko Yu.M., Ilin B.H., Neimark I.Ie. Kondensatsiia toluolu i metanolu na syntetychnykh tseolitakh z ionoobminnymy kationamy luzhnozemelnykh metaliv. Dop. AN URSR. Ser. B. 1967, № 1. S. 61-64.

16. Vinek H., Derewinski M., Mirth G., Lercher J.A. Alkylation of toluene with methanol over alkali exchanged ZSM-5. Appl. Catal. 1991. 68. № 1. pp. 277-284.

https://doi.org/10.1016/S0166-9834(00)84108-1

17. Phillippou A., Anderson M.W. Solid-state NMR investigation of the alkylation of toluene with methanol over basic zeolite X. J. Am. Chem. Soc. 1994. 116. pp. 5774-5783.

https://doi.org/10.1021/ja00092a031

18. Vayssilov G.N., Lercher J.A., Rösch N. Interaction of Methanol with Alkali Metal Exchanged Molecular Sieves. 2. Density Functional Study. J. Phys. Chem. B. 2000. 104. № 35. pp. 8614-8623.

https://doi.org/10.1021/jp000195x

19. Hunger M., Schenk U., Weitkamp J. Mechanistic studies of the side-chain alkylation of toluene with methanol on basic zeolites Y by multi-nuclear NMR spectroscopy. J. Mol. Catal. A: Chem. 1998. 134. pp. 97-109.

https://doi.org/10.1016/S1381-1169(98)00026-0

20. Kang L., Han K. Adsorption and dehydrogenation of methanol on alkali-cation-exchanged zeolite: A first-principles density functional study. Microporous Mesoporous Mater. 2010. 127. pp. 90-95.

https://doi.org/10.1016/j.micromeso.2009.06.034

21. Palomares A.E., Eder-Mirth G., Rep M., Lercher J.A. Alkylation of Toluene over Basic Catalysts-Key Requirements for Side Chain Alkylation. J. Catal. 1998. 180. pp. 56-65.

https://doi.org/10.1006/jcat.1998.2253

22. Patrilyak K.I., Sidorenko Yu.N., Bortyshevskij V.A. Alkilirovanie na czeolitakh. Kiev, Naukova dumka. 1991. 176 s.

23. Stolyarchuk I.L., Dolgikh L.Yu., Strizhak P.E., Shvecz A.V., Burushkina T.N., Ilin V.G. Alkilirovanie toluola metanolom v bokovuyu czep na Cs-soderzhashhikh czeolitnykh i uglerodnykh katalizatorakh. Kataliz v khimicheskoj i neftekhimicheskoj promyshlennosti. 2007. № 5. S. 3-11.

24.Lacroix C., Deluzarche A., Kiennemann A., Boyer A. Promotion role of some metals (Cu, Ag) in the side chain alkylation of toluene by methanol. Zeolites. 1984. 4. №2. pp. 109-111.

https://doi.org/10.1016/0144-2449(84)90046-0

25. Lee H., Lee S., Ryoo R., Choi M. Revisiting side-chain alkylation of toluene to styrene: Critical role of microporous structures in catalysts. J. Catal. 2019. 373. pp. 25-36.

https://doi.org/10.1016/j.jcat.2019.03.027

26. Yashima T., Sato K., Hayasaka T., Hara N. Alkylation on synthetic zeolites: III. Alkylation of toluene with methanol and formaldehyde on alkali cation exchanged zeolites. J. Catal. 1972. 26. pp. 303-312.

https://doi.org/10.1016/0021-9517(72)90088-7

27. Sooknoi T., Dwyer J. Hydrogenation of styrene and hydrogenolysis of 2- phenylethanol: Mechanistic study of the side-chain alkylation of toluene and methanol. Stud. Surf. Sci. Catal. 1995. 97. pp. 423-429.

https://doi.org/10.1016/S0167-2991(06)81917-8

28. Voloshyna Yu.G., Pertko O.P., Konovalov S.V., Patrylak L.K. Benzene as a by-product of toluene with methanol transformationon the basic zeolite catalysts and its presumable origin. Adsorption Science and Technology. 2017. 35. №7-8. pp. 700-705.

https://doi.org/10.1177/0263617417705963

29. Han H., Liu M., Nie X., Ding F., Wang Y., Li J., Guo X., Song Ch. The promoting effects of alkali metal oxide in side-chain alkylation of toluene with methanol over basic zeolite X. Microporous Mesoporous Mater. 2016. 234. pp.61-72.

https://doi.org/10.1016/j.micromeso.2016.06.045

30. Alabi W.O., Tope B.B., Jermy R.B., Aitani A.M., Hattori H., Al-Khattaf S.S. Modification of Cs-X for styrene production by side-chain alkylation of toluene with methanol. Catal. Today. 2014. 226. pp. 117-123.

https://doi.org/10.1016/j.cattod.2013.08.004

31. Song L., Yu Y., Li Z., Guo S., Zhao L., Li W. Side-chain alkylation of toluene with Methanol over Zn-Modified KX Zeolite. J. Braz. Chem. Soc. 2014. 25. pp. 1346-1354.

https://doi.org/10.5935/0103-5053.20140116

32. Serra J.M., Corma A., Farrusseng D. et al. Styrene from toluene by combinatorial catalysis. Catal. Today. 2003. 81. № 3. pp. 425-436.

https://doi.org/10.1016/S0920-5861(03)00142-1

33.Davis R.J. New perspectives on basic zeolites as catalysts and catalyst supports. J. Catal. 2003. 216. pp. 396-405.

https://doi.org/10.1016/S0021-9517(02)00034-9

34. Manivannan R., Pandurangan A. Formation of ethyl benzene and styrene by side chain methylation of toluene over calcined LDHs. Applied Clay Science. 2009. 44. pp. 137-143.

https://doi.org/10.1016/j.clay.2008.12.017

35. Manivannan R., Pandurangan A. Alkilirovanie toluola etanolom v bokovuyu czep v prisutstvii gidrotalczitopodobnykh soedinenij. Kinetika i kataliz. 2010. 51. №1. S. 62-68.

https://doi.org/10.1134/S0023158410010106

36. Mustafaeva R.M. Izuchenie kineticheskikh zakonomernostej i vybor optimalnykh uslovij proczessa alkilirovaniya toluola metanolom. Vestnik Bakinskogo universiteta. 2009. № 3. S. 56-59.

37. Zhang Zh., Shan W., Li H. et al. Side-chain alkylation of toluene with methanol over boron phosphate modified cesium ion-exchanged zeolite X catalysts. J. Porous Mater. 2015. 22. pp. 1179-1186.

https://doi.org/10.1007/s10934-015-9994-9

38. Jiang J., Lu G., Miao Ch., Wu X., Wu W., Sun Q. Catalytic performance of X molecular sieve modified by alkali metal ions for the side-chain alkylation of toluene with methanol. Microporous Mesoporous Mater. 2013. 167. pp. 213-220.

https://doi.org/10.1016/j.micromeso.2012.09.006

39. Hong Zh., Xiong Ch., Zhao G., Zhu Zh. Side-chain alkylation of toluene with methanol to produce styrene: an overview. Catal. Sci. Technol. 2019. 9. pp. 6828-6840.

https://doi.org/10.1039/C9CY01581G

40. Chen H., Li X., Zhao G., Gu H., Zhu Z. Free radical mechanism investigation of the side-chain alkylation of toluene with methanol on basic zeolites X Chin. J. Catal. 2015. 36. pp. 1726-1732.

https://doi.org/10.1016/S1872-2067(15)60896-8

41. Seo D.-W., Rahma S.T., Reddy B.M., Park S.-E. Carbon dioxide assisted toluene side-chain alkylation with methanol over Cs-X zeolite catalyst. J. CO2 Util. 2018. 26. pp. 254-261.

https://doi.org/10.1016/j.jcou.2018.05.001

42. King S. T., Garces J. M. In Situ Infrared Study of Alkylation of Toluene with Methanol on Alkali Cation-Exchanged Zeolites. J. Catal. 1987, 104. pp. 59-70.

https://doi.org/10.1016/0021-9517(87)90336-8

43. Rep M., Palomares A.E., Eder-Mirth G., Ommen J.G., Rösch N., Lercher J.A. Interaction of Methanol with Alkali Metal Exchanged Molecular Sieves. 1. IR Spectroscopic Study. J. Phys. Chem. B. 2000. 104. № 35. pp. 8624-8630.

https://doi.org/10.1021/jp0001945

44.Hunger M., Schenk U., Seiler M., Weitkamp J. In situ MAS NMR spectroscopy of surface compounds formed from methanol and from a toluene-methanol mixture on basic zeolite X. J. Mol. Catal. A: Chem. 2000. 156. pp. 153-161.

https://doi.org/10.1016/S1381-1169(99)00404-5

45. Simperler A., Bell R.G., Philippou A., Anderson M.W. Theoretical study of toluene adsorbed on zeolites X and Y: Calculation of 13C NMR parameters. J. Phys. Chem. B. 2002. 106. № 42. pp. 10944-10954.

https://doi.org/10.1021/jp0257799

46. Kumari Vasanthy B., Palanichamy M., Krishnasamy V. Side chain alkylation of toluene with isopropanol and methanol over alkali exchanged zeolites. Appl. Catal., A. 1996. 148. № 1. pp. 51-61.

https://doi.org/10.1016/S0926-860X(96)00227-X

47. Pertko O.P., Voloshyna Y.G., Kontsevoi A.L., Trachevsky V.V. Ethylbenzene formation and its conversion towards coke in the side-chain methylation of toluene on a basic X zeolite. J. Porous Mater. (2021).

https://doi.org/10.1007/s10934-021-01119-8

48. Han H., Liu M., Ding F., Wang Y., Guo X., Song C. Effects of cesium ions and cesium oxide in side-chain alkylation of toluene with methanol over cesium-modified zeolite X. Ind. Eng. Chem. Res. 2016. 55. № 7. pp. 1849-1858.

https://doi.org/10.1021/acs.iecr.5b04174

49. Li P., Han Q., Zhang X., Yuan Y., Zhang Y., Xu L., Guo H., Xu L. Explaining the influence of the introduced base sites into alkali oxide modified CsX towards side-chain alkylation of toluene with methanol. RSC Advances. 2019. 9. pp. 13234-13242.

https://doi.org/10.1039/C9RA01798D

50. Wang Y., Zhu M., Kang L., Dai B. Density functional theory study of side-chain alkylation of toluene with formaldehyde over alkali-exchanged zeolite. Microporous Mesoporous Mater. 2014. 196. pp. 129-135.

https://doi.org/10.1016/j.micromeso.2014.05.007

51. Li X., Lu J., Li Y., Yu J. Roles of hydroxyl groups during side-chain alkylation of toluene with methanol over zeolite Na-Y: A density functional theory study. Chin. J. Chem. 2017. 35. № 5. pp. 716-722.

https://doi.org/10.1002/cjoc.201600594

52. Garces J.M., Vrieland G.E., Bates S.I., Scheidt F.M. Basic molecular sieve catalysts-side chain alkylation of toluene by methanol. Stud. Surf. Sci. Catal. 1985. 20. pp. 67-74.

https://doi.org/10.1016/S0167-2991(09)60157-9

53. Hattori H., Alabi W.O., Jermy B.R., Aitani A.M., Al-Khattaf S.S. Pathway to ethylbenzene formation in side-chain alkylation of toluene with methanol over cesium ion-exchanged zeolite X. Catal. Lett. 2013. 143. pp. 1025-1029.

https://doi.org/10.1007/s10562-013-1049-8

54. Tope B.B., Alabi W.O., Aitani A.M., Hattori H., Al-Khattaf S.S. Side-chain alkylation of toluene with methanol to styrene over cesium ion-exchanged zeolite X modified with metal borates. Appl. Catal., A. 2012. 443-444. pp. 214-220.

https://doi.org/10.1016/j.apcata.2012.08.003

55. Zeolite catalyst for the alkylation of toluene with methanol: Patent 8697593 US. Appl. No. 13/418,202; Prior Publication Data US 2013/0237735 A1 12.09.2013; Application granted 15.04.2014. 4 p.

56. Hattori H., Amusa A.A., Jermy R.B., Aitani A.M., Al-Khattaf S.S. Zinc oxide as efficient additive to cesium ion-exchanged zeolite X catalyst for side-chain alkylation of toluene with methanol. J. Mol. Catal. A: Chem. 2016. 424. pp. 98-105.

https://doi.org/10.1016/j.molcata.2016.08.015

57. Li P., Han Q., Zhang X., Yuan Y., Zhang Y., Guo H., Xu L., Xu L. A new insight into the reaction behaviors of side-chain alkylation of toluene with methanol over CsX. Catal. Sci. Technol. 2018. 8. № 13. pp. 3346-3356.

https://doi.org/10.1039/C8CY00597D

58. Voloshyna Yu.H., Ivanenko V.V., Patryliak L.K., Pertko O.P., Patryliak K.I., Yakovenko A.V. Alkiluvannia toluolu metanolom do styrolu na modyfikovanomu luzhnymy metalamy tseoliti X. Khimiia, fizyka ta tekhnolohiia poverkhni. 2014. 5. №2. S. 197-203.

59.Voloshyna Yu.G., Pertko O.P., Patrylak L.K. Effect of the Method of Modification of Zeolite X on Selectivity of Catalytic Methylation of Toluene. Theor. Exp. Chem. 2019, 54. №6. P. 395-400.

https://doi.org/10.1007/s11237-019-09586-6

60. Archier D., Coudurier G., Naccache C. Lateral-Chain Methylation Of Toluene Over Boron And/Or Zinc Modified Cesium-X Zeolite. Proceedings of the 9th International Zeolite Conference (Montreal, July 5-10 1992). Butterworth-Heinemann, 1993. pp. 525-533.

https://doi.org/10.1016/B978-1-4832-8383-8.50147-1

61. Arishtirova K., Kovacheva P., Predoeva A. Effect of structural analogy between ZSM-5 and silicalite catalysts on the oxidative methylation of toluene with methane. React. Kinet. Catal. Lett. 2005. 84. №1. pp. 53-59.

https://doi.org/10.1007/s11144-005-0190-9

62. Jiang N., Jin H., Jeong E.-Y., Park S.-E. MgO encapsulated mesoporous zeolite for the side chain alkylation of toluene with methanol. J. Nanosci. Nanotechnol. 2010. 10. pp. 227-232.

https://doi.org/10.1166/jnn.2010.1513

63. Wang H., Wang B., Wen Y., Huang W. High-yielded side-chain alkylation from toluene and methanol over K3PO4/CsX. Catal. Lett. 2017. 147. pp.161-166.

https://doi.org/10.1007/s10562-016-1911-6

64. Zhang R., Sun Yu., Peng Sh. In situ FTIR studies of methanol adsorption and dehydrogenation over Cu/SiO2 catalyst. Fuel. 2002. 81. № 11-12. pp. 1619-1624.

https://doi.org/10.1016/S0016-2361(02)00085-6

65. Maldqnado C., Fierro J.L.G., Birke G., Martinez E., Reyes Р. Сonversion of methanol to formaldehyde on TiO2 supported Ag nanoparticles. J. Chil. Chem. Soc. 2010. 55. № 4. pp. 506-510.

https://doi.org/10.4067/S0717-97072010000400021

66. Voloshyna Yu.H. Kompleksne modyfikuvannia tseolitiv v napriami oderzhannia efektyvnykh katalizatoriv. Katalyz i neftekhymyia. 2011. №19. S. 92-100.

67. Hayashi M., Tawada Sh., Kubota Yo., Sugi Yo., Kim J.H. Deactivation of external acid sites of H-mordenite by silica-modification in the isopropylation of biphenyl. React. Kinet. Catal. Lett. 2004. 83. №2. pp. 329-335.

https://doi.org/10.1023/B:REAC.0000046094.54385.a7

68. Bauer F., Bilz E., Freyer A. C-14 studies in xylene isomerization on modified HZSM-5. Appl. Catal., A. 2005. 289. №1-2. pp. 2-9.

https://doi.org/10.1016/j.apcata.2005.04.008

69. Kikuchi S., Kojima R., Ma H., Bai J., Ichikawa M. Study on Mo/HZSM-5 catalysts modified by bulky aminoalkyl-substituted silyl compounds for the selective methane-to-benzene (MTB) reaction. J. Catal. 2006. 242. №2. pp. 349-356.

https://doi.org/10.1016/j.jcat.2006.06.024

70. Breen J.P., Burch R., Kulkarni M., McLaughlin D., Collier P.J., Golunski S.E. Improved selectivity in the toluene alkylation reaction through understanding and optimizing the process variables. Appl. Catal., A. 2007. 316. №1. pp. 53-60.

https://doi.org/10.1016/j.apcata.2006.09.017

71. Voloshyna Yu.H., Repetskyi I.A., Patryliak L.K., Patryliak K.I. Modyfikuvannia zovnishnoi poverkhni tseolitnykh krystaliv - shliakh do pidvyshchennia yikh katalitychnoi efektyvnosti. Mizhvid. zbirnyk nauk. prats "Khimiia, fizyka ta tekhnolohiia poverkhni". 2008. № 14. S. 429-436.

72. Voloshyna Yu.H., Repetskyi I.A., Patryliak K.I. ta in. Novi pidkhody do selektyvnoi dezaktyvatsii zovnishnoi poverkhni kyslotnykh tseolitiv. Katalyz i neftekhymyia. 2009. №17. S. 39-44.

73. Ren X., Liang J., Wang J. H-MCM-22 zeolitic catalysts modified by chemical liquid deposition for shape-selective disproportionation of toluene. J. Porous Mater. 2006. 3. №3. P. 353-357.

https://doi.org/10.1007/s10934-006-8030-5

74. Voloshyna Yu., Krylova M., Ivanenko V., Pertko O., Patryliak L., Patryliak K. Metyluvannia toluolu na modyfikovanykh ahentamy riznoi pryrody osnóvnykh tseolitakh. Postup v naftohazopererobnii ta naftokhimichnii promyslovosti: Materialy VII Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Lviv, 19-24 trav. 2014). Lviv: Natsionalnyi universytet "Lvivska politekhnika", 2014. S. 161-164.

75. Pertko O.P., Voloshyna Yu.H. Vplyv kilkosti y pryrody tamponuiuchoho ahenta na efektyvnist katalizatoriv u para-dysproportsionuvanni toluolu. Perspektyvni shliakhy rozvytku naukovykh znan: materialy III Mizhnarodnoi nauk.-prakt. konf. (Kyiv, 9-10 ber. 2020). Kyiv: MTsNiD, 2020. S. 32-33.

76. Tempelman C.H.L., Rodrigues V.O., Eck E.R.H., Magusin P.C.M.M., Hensen E.J.M. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization. Microporous Mesoporous Mater. 2015. 203.pp. 259-273.

https://doi.org/10.1016/j.micromeso.2014.10.020

77. Jin Z., Liu S., Qin L., Liu Z., Wang Y., Xie Z., Wang X. Methane dehydroaromatization by Mo-supported MFI-type zeolite with core-shell structure. Appl. Catal., A. 2013. 453. pp. 295-301.

https://doi.org/10.1016/j.apcata.2012.12.043

78. Huang X., Wang R., Pan X., Wang C., Fan M., Zhu Y., Wang Y., Peng J. Catalyst design strategies towards highly shape-selective HZSM-5 for para-xylene through toluene alkylation. Green Energy & Environment. 2020.

https://doi.org/10.1016/j.gee.2019.12.001

79. Ji Y.J., Zhang B., Xu L., Wu H., Peng H., Chen L., Liu Y., Wu P. Core/shell-structured Al-MWW@B-MWW zeolites for shape-selective toluene disproportionation to para-xylene. J. Catal. 2011. 283(2). pp. 168-177.

https://doi.org/10.1016/j.jcat.2011.08.007

80. Zhang B., Zhong Z.P., Chen P., Ruan R. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresour. Technol. 2015. 197. pp. 79-84.

https://doi.org/10.1016/j.biortech.2015.08.063

81. Mitsuyoshi D., Kuroiwa K., Kataoka Y., Nakagawa T., Kosaka M., Nakamura K., Suganuma S., Araki Y., Katada N. Shape selectivity in toluene disproportionation into para-xylene generated by chemical vapor deposition of tetramethoxysilane on MFI zeolite catalyst. Microporous Mesoporous Mater. 2017. 242. pp. 118-126.

https://doi.org/10.1016/j.micromeso.2017.01.022

82. Teng H., Wang J., Ren X., Chen D. Disproportionation of toluene by modified ZSM-5 zeolite catalysts with high shape-selectivity prepared using chemical liquid deposition with tetraethyl orthosilicate. Chin. J. Chem. Eng. 2011. 19(2). pp. 292-298.

https://doi.org/10.1016/S1004-9541(11)60168-7

83. Lu P., Fei Z., Li L., Feng X., Ji W., Ding W., Chen Y., Yang W., Xie Z. Effects of controlled SiO2 deposition and phosphorus and nickel doping on surface acidity and diffusivity of medium and small sized HZSM-5 for para-selective alkylation of toluene by methanol. Appl. Catal. A Gen. 2013. 453. pp. 302-309.

https://doi.org/10.1016/j.apcata.2012.12.042

84. Ahn J.H., Kolvenbach R., Neudeck C., Al-Khattaf S.S., Jentys A., Lercher J.A. Tailoring mesoscopically structured H-ZSM5 zeolites for toluene methylation. J. Catal. 2014. 311. pp. 271-280.

https://doi.org/10.1016/j.jcat.2013.12.003

85. Wang C., Zhang Q., Zhu Y., Zhang D., Chen J., Chiang F.-K. p-Xylene selectivity enhancement in methanol toluene alkylation by separation of catalysis function and shape-selective function. Mol. Catal. 2017. 433. pp. 242-249.

https://doi.org/10.1016/j.mcat.2016.12.007

86. Voloshyna Yu., Patrylak L., Manza I., Yakovenko A. Influence of zeolite crystals external surface modification on toluene para-disproportionation selectivity. Chemistry & Chemical Technology. 2007. 1. №2. c. 79-81.

https://doi.org/10.23939/chcht01.02.079

87. Voloshyna Yu.H., Pertko O.P., Yakovenko A.V. ta in. Selektyvatsiia zakoksuvanniam in situ tseolitu H-MFI yak katalizatora dysproportsionuvannia toluolu. Katalyz i neftekhymyia. 2016. № 25. S. 69-73.

88. Yoshihiro S., Anand C., Stalin J., Kenichi K., Hoi-Gu J., Sung J.C., Jong-Ho K., Gon S., Akira E., Shogo T., Joji S., Daifallah M.A., Ahmed A.E., Ajayan V. Lanthanide oxide modified H-Mordenites: Deactivation of external acid sites in the isopropylation of naphthalene. Microporous Mesoporous Mater. 2016. 230. pp. 217-226.

https://doi.org/10.1016/j.micromeso.2016.04.036

89. Kubota Y., Inagaki S., Takechi K. Hexane cracking catalyzed by MSE-type zeolite as a solid acid catalyst. Catal. Today. 2014. 226. pp. 109-116.

https://doi.org/10.1016/j.cattod.2013.10.032

90. Voloshyna Yu.H., Pertko O.P., Demydenko M.M., Patryliak K.I., Manza I.A., Patryliak L.K. Dezaktyvatsiia tseolitu HY iz selektyvno znekyslotnenoiu zovnishnoiu poverkhneiu v reaktsii krekinhu pentenu-1. Katalyz i neftekhymyia. 2012. № 20. S. 91-93.

91. Patryliak L.K., Voloshyna Yu.H., Demydenko M.M., Manza I.A. Vplyv dezaktyvatsii zovnishnoi poverkhni tseolitu HY na perebih reaktsii krekinhu kumolu. Katalyz i neftekhymyia. 2012. № 21. S. 55-57.

92. Zhao X., Hong Y., Wang L., Fan D., Yan N., Liu X., Tian P., Guo X., Liu Z. External surface modification of as-made ZSM-5 and their catalytic performance in the methanol to propylene reaction. Chin. J. Catal. 2018. 39(8). pp. 1418-1426.

https://doi.org/10.1016/S1872-2067(18)63117-1

93. van der Bij H.E., Weckhuysen B.M. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chem. Soc. Rev. 2015. 44. Pp. 7406-7428.

https://doi.org/10.1039/C5CS00109A

94.Zhang B., Zhong Z., Song Z., Ding K., Chen P., Ruan R. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetic acid modification on catalytic fast pyrolysis of corn stalk. J. Power Sources. 2015. 300. pp. 87-94.

https://doi.org/10.1016/j.jpowsour.2015.09.075

95. Pertko O.P., Voloshyna Yu.H., Konovalov S.V., Patryliak L.K. Dezaktyvatsiia katalizatoriv na osnovi tseolitu X z aktyvnoiu i modyfikovanoiu heksaftorsylikatom amoniiu poverkhneiu u metyluvanni toluolu. Katalyz i neftekhymyia. 2017. № 26. S. 30-35.

96. Pertko O.P., Voloshyna Yu.H., Patryliak L.K. Sposib oderzhannia tseolitnoho katalizatora alkiluvannia toluolu metanolom v bichnyi lantsiuh: pat. na korysnu model 140722 Ukraina. № u 2019 08471; zaiavl. 17.07.2019; opubl. 10.03.2020, Biul. № 5. 3 s.

97. Voloshyna Yu.H., Solomakha V.M., Konovalov C.V., Patryliak K.I., Patryliak L.K., Okhrimenko M.V., Ivanenko V.V. Otsinka koksovykh vidkladen u tseolitnykh katalizatorakh riznoi struktury deryvatohrafichnym metodom. Katalyz i neftekhymyia. 2012. № 21. S. 59-62.

98.Barthomeuf D. Basic Zeolites: Characterization and Uses in Adsorption and Catalysis. Cat. Rev. Sci. Eng. 1996. 38. №4. pp. 521-612.

https://doi.org/10.1080/01614949608006465

99. Unland M.L. Infrared study of methanol decomposition on alkali metal X-type zeolites. J. Phys. Chem. 1978. 82(5). pp. 580-583.

https://doi.org/10.1021/j100494a016

100. Garces J.M., Stone F.C., Bates S.I., Curnutt J.L., Scheidt F.H. Deactivation and regeneration of zeolite CsNaX catalyst used for the side chain alkylation of toluene with methanol. Innovation in Zeolite Materials Science. P.J. Grobet et al. (Eds.). Amsterdam: Elsevier Science Publishers B.V. 1988. pp. 505-511.

https://doi.org/10.1016/S0167-2991(09)60628-5


Current issue

2021 - Vol.31

Content of the issue

Download article