Regularities of epoxidized alkyl oleates ring-opening reactions with alcohols, water and organic acids in the presence of commercial sulfonated resins as catalysts
Article PDF

Keywords

fatty epoxide, oxirane ring-opening, sulfonated resins, solid acid catalyst, alkoxylation, hydrolysis, acylation, isomerization

How to Cite

Davitadze, D. Z., & Konovalov, S. V. (2024). Regularities of epoxidized alkyl oleates ring-opening reactions with alcohols, water and organic acids in the presence of commercial sulfonated resins as catalysts. Catalysis and Petrochemistry, (35), 72-90. https://doi.org/10.15407/kataliz2024.35.072

Abstract

Current paper deals with the use of sulfonated resins, distinguished by the porous structure (macroreticular Purolite CT275 and gel-type CU-2-8ChS), as solid acid catalysts for syntheses of perspective components of biolubricants via oxirane ring-opening reactions of fatty epoxides with water (hydrolysis), ethanol and i-propanol (alkoxylation), and levulinic and oleic acids (acylation). Epoxidized ethyl and i-propyl oleates as ring opening substrates were synthesized from used cooking oil. Reactions were carried out in batch reactor for 3 h at 100 °C under stirring with epoxide: resin acid sides molar ratio 1 : 0.05. Reagent to epoxide ratio was 10 : 1 (alkoxylation, hydrolysis) or 1.5 : 1 (acylation). Products composition was determined by GC, conversion and selectivity were calculated. Number of side ring-opening reaction were revealed, main of which were isomerization to ketone and dimerization. General observation is that porous Purolite CT275 provides higher conversion, but facilitates side processes. Non-porous CU-2-8-CHs provided notably higher selectivity (up to 90 % for hydroxyl esters in ethoxylation), but with many-times slower conversion, especially in case of alkoxylation with secondary alcohol. In hydrolysis, water soaked cationites did not provide any conversion, while epoxide introduction first on catalyst made transformation possible. Acylation proceeded in a great extent without separate catalyst and was accompanied by dimerization, while isomerization was not observed. Gel-type resin provided only negligible growth of conversion and selectivity. Porous resin enhanced the conversion, but mainly by side reactions intensification. Cyclohexane as solvent facilitated slightly selective catalyst-free acylation, but with significant conversion drop. Purolite CT275 in ethyl levulinate media favored the ring opening of epoxide with ketone function, yielding ketal-type product.

https://doi.org/10.15407/kataliz2024.35.072
Article PDF

References

Moser B.R., Cermak S.C., Doll K.M., Kenar J.A., Sharma B.K. A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications. J. Am. Oil Chem. Soc., 2022, 99(1), 801–842.

Orjuela A., Clark J. Green Chemicals from Used Cooking Oils: Trends, Challenges and Opportunities. Curr. Opin. Green Sustainable Chem., 2020, 26, 100369.

Benaniba M.T., Belhaneche-Bensemra N., Gelbard G. Stabilization of PVC by epoxidized sunflower oil in the presence of zinc and calcium stearates. Polym. Degrad. Stab., 2003, 82, 245–249..

Hassan A.A., Abbas A., Rasheed T., Bilal M., Iqbal H.M.N., Wang S. Development, influencing parameters and interactions of bioplasticizers: an environmentally friendlier alternative to petro industry-based sources. Sci. Total Environ., 2019, 682, 394–404.

Milchert E., Malarczyk K., Klos M. Technological aspects of chemoenzymatic epoxidation of fatty acids, fatty acid esters and vegetable oils: a review. Molecules, 2015, 20(12), 21481–21493.

Milchert E., Malarczyk-Matusiak K., Musik M. Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review. Pol. J. Chem. Technol., 2016, 18, 128–133.

Nameer S., Deltin T., Sundell P.K., Johansson M. Bio-based multifunctional fatty acid methyl esters as reactive diluents in coil coatings. Prog. Org. Coat., 2019, 136, 105277.

Radojcic D., Hong J., Petrovic Z.S. From natural oils to epoxy resins: a new paradigm in renewable performance materials. J. Polym. Environ., 2022, 30, 765–775.

Radojcic D., Ionescue M., Petrovic Z.S. Room temperature cationic polymerization of epoxy methyl oleate with B(C6F5)3. J. Polym. Environ., 2021, 29, 2072–2079.

Liu Z., Erhan S.Z., Calvert P.D. Solid freeform fabrication of epoxidized soybean oil/epoxy composites with di-, tri-, and polyethylene amine curing agents. J. Appl. Polym. Sci., 2007, 93, 356–363.

Samper M.D., Fombuena V., Boronat T., Garcia-Sanoguera D., Balart R. Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. J. Am. Oil Chem. Soc., 2012, 89, 1521–1528.

Llevot A. Sustainable synthetic approaches for the preparation of plant oil-based thermosets. J. Am. Oil Chem. Soc., 2017, 94, 169–186.

Ribau M., Nogueira R., Miguel L. Quantitative assessment of the valorisation of used cooking oils in 23 countries. Waste Manage., 2018, 78, 611–620.

Hwang H.K., Erhan S.Z. Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. J. Am. Oil Chem. Soc., 2001, 78, 1179–1184.

Hwang H.K., Adhvaryu A., Erhan S.Z. Preparation and properties of lubricant basestocks from epoxidized soybean oil and 2-ethylhexanol. J. Am. Oil Chem. Soc., 2003, 80, 811–815.

Hwang H.K., Erhan S.Z. Synthetic lubricant basestocks from epoxidized soybean oil and Guerbet alcohols. Ind. Crops Prod., 2006, 23, 311–317.

Borugadda V.B., Goud V.V. Hydroxylation and hexanoylation of epoxidized waste cooking oil and epoxidized waste cooking oil methyl esters: process optimization and physico-chemical characterization. Ind. Crops Prod., 2019, 133,151–159.

Moser B.R., Erhan S.Z. Synthesis and evaluation of a series of α-hydroxy ethers derived from isopropyl oleate. J. Am. Oil Chem. Soc., 2006, 83, 959–963.

Moser B.R., Erhan S.Z. Preparation and evaluation of a series of α-hydroxy ethers from 9,10-epoxystearates. Eur. J. Lipid Sci. Technol., 2007, 109, 206–213.

Kulkarni R.D., Deshpande P.S., Mahajan S.U., Mahulikar P.P. Epoxidation of mustard oil and ring opening with 2-ethylhexanol for biolubricants with enhanced thermo-oxidative and cold flow characteristics. Ind. Crops Prod., 2013, 49, 586–592.

Harry-O’kuru R.E., Holser R.A., Abbott T.P., Weisleder D. Synthesis and characteristics of polyhydroxy triglycerides from milkweed oil. Ind. Crops Prod., 2002, 15, 51–58.

Kollbe A. B., Kraft S., Wang D., Sun S. Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil. Biomacromolecules, 2011, 12, 1839–1843.

Li Y., Sun X.S. Camelina oil derivatives and adhesion properties. Ind. Crops Prod., 2015, 73, 73–80.

Pillai P.K.S., Li S., Bouzidi L., Narine S.S. Solvent-free synthesis of polyols from 1-butene metathesized palm oil for use in polyurethane foams. J. Appl. Polym. Sci., 2016, 133, 43509.

Arbenz A., Perrin R., Averous L. Elaboration and properties of innovative biobased PUIR foams from microalgae. J. Polym. Environ., 2018, 26, 254–262.

Campanella A., Bonnaillie L.M., Wool R.P. Polyurethane foams from soyoil-based polyols. J. Appl. Polym. Sci., 2009, 112, 2567–2578.

Campanella A., Rustoy E., Baldessari A., Baltanas M.A. Lubricants from chemically modified vegetable oils. Bioresour. Technol., 2010, 101, 245–254.

Gobin M., Loulergue P., Audic J.L., Lemiegre L. Synthesis and characterization of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crops Prod., 2015, 70, 213–220.

Pindit K., Thanapimmetha A., Saisriyoot M., Srinopakun P. Biolubricant basestocks synthesis using 5-step reaction from jatropha oil, soybean oil, and palm fatty acid distillate. Ind. Crops Prod., 2021, 166, 113484.

Salimon J., Abdullah B.M., Salih N. Optimization of the oxirane ring opening reaction in biolubricant base oil production. Arab. J. Chem., 2016, 9, 1053–1058.

Hazmi A.S.A., Aung M.M., Abdullah L.C., Salleh M.Z., Mahmood M.H. Producing Jatropha oil-based polyol via epoxidation and ring opening. Ind. Crops Prod., 2013, 50, 563–567.

Junming X., Jianchun J., Jing L. Preparation of polyester polyols from unsaturated fatty acid. J. Appl. Polym. Sci., 2012, 126, 1377–1784.

Azzena U., Carraro M., Pisano L., Pintus E., Pintus S., Polese R. et al. Size selectivity in the hydroxylation of esters of unsaturated fatty acids. Eur. J. Lipid Sci. Technol., 2022, 124, 2100234.

Rios L., Echeverri D., Cardeno F. Hydroxylation of vegetable oils using acidic resins as catalysts. Ind. Crops Prod., 2013, 43, 183–187.

Borugadda V.B., Somidi A.K.R., Dalai A.K. Chemical/structural modification of canola oil and canola biodiesel: kinetic studies and biodegradability of the alkoxides. Lubricants, 2017. 5(2), 11.

Coman A.E., Peyrton J., Hubca G., Sarbu A., Gabor A.R., Nicolae C.A. et al. Synthesis and characterization of renewable polyurethane foams using different biobased polyols from olive oil. Eur. Polym. J., 2021, 149, 110363.

Lathi P.S., Mattiasson B. Green approach for the preparation of biodegradable lubricant base stock from epoxidized vegetable oil. Appl. Catal. B, 2007, 69, 207–212.

Madankar C.S., Dalai A.K., Naik S.N. Green synthesis of biolubricant base stock from canola oil. Ind. Crops Prod., 2013, 44, 139–144.

Marques J.P.C., Rios I.C., Parente E.J.S.Jr., Quintella S.A., Luna F.M.T., Cavalcante C.L.Jr. Synthesis and characterization of potential bio-based lubricant basestocks via epoxidation process. J. Am. Oil Chem. Soc., 2019, 97, 437–446.

Omonov T.S., Kharraz E., Curtis J.M. Camelina (Camelina sativa) oil polyols as an alternative to castor oil. Ind. Crops Prod., 2017, 107, 378–385.

Peyrton J., Chambaretaud C., Sarbu A., Averous L. Biobased polyurethane foams based on new polyol architectures from microalgae oil. ACS Sustain. Chem. Eng., 2020, 8, 12187–12196.

Peyrton J., Chambaretaud C., Averous L. New insight on the study of the kinetic of biobased polyurethanes synthesis based on oleochemistry. Molecules, 2019, 24, 4332.

Schuster H., Rios L.A., Weckes P.P., Hoelderich W.F. Heterogeneous catalysts for the production of new lubricants with unique properties. Appl. Catal. A Gen., 2008, 348(2), 266–270.

Osazuwa U.I., Abidin S.Z. The Functionality of ion exchange resins for esterification, transesterification and hydrogenation reactions. СhemSelect., 2022, 5, 7658–7670.

Khodadadi M.R., Malpartida I., Tsang C-W., Lin C.S.K., Len C. Recent advances on the catalytic conversion of waste cooking oil. Molecular Catalysis, 2020, 494, 111128.

Orege R., Oderinde O., Kifle G.A., Ibikunle A.A., Raheem S.A., Ejeromedoghene O. et al. Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Energy Convers. Manage., 2022, 258, 115406.

Tao J., Pan Y., Zhou H., Tang Y., Ren G., Yu Z., Li J., Zhang R., Li X., Qiao Y., Lu X., Xiong J. Catalytic systems for 5-hydroxymethylfurfural preparation from different biomass feedstocks: a review. Catalysts, 2024, 14, 30–43.

Wang Y., Yuan X., Liu J., Jia X. Recent advances in zeolites-catalyzed biomass conversion to hydroxymethylfurfural: the role of porosity and acidity. ChemPlusChem, 2024, 89, e202300399.

Gómez‐de‐Miranda‐Jiménez‐de‐Aberasturi O., Perez‐Arce J. Efficient epoxidation of vegetable oils through the employment of acidic ion exchange resins. Can. J. Chem. Eng., 2019, 97(6), 1785–1791.

Turco R., Vitiello R., Russo V., Tesser R., Santacesaria E., Di Serio M. Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Process. Synth., 2013, 2(5), 427–434.

Bouzidi L., Li S., De Biase S., Rizvi S.Q., Dawson P., Narine S.S. Lubricating and waxy esters II: synthesis, crystallization, and melt behavior of branched monoesters. Ind. Eng. Chem. Res., 2012, 51, 14892–14902.

Caillol S., Desroches M., Boutevin G., Loubat C., Auvergne R., Boutevin B. Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. Eur. J. Lipid Sci. Technol., 2012, 114, 1447–1459.

Moser B.R., Sharma B.K., Doll K.M., Erhan S.Z. Diesters from oleic acid: synthesis, low temperature properties, and oxidation stability. J. Am. Oil Chem. Soc., 2007, 84, 675–680.

Dehghan P., Noroozi M., Sadeghi G.M.M., Abrisham M., Amirkiai A. Panahi-Sarmad M. Synthesis and design of polyurethane and its nanocomposites derived from canola-castor oil: mechanical, thermal and shape memory properties. J. Polym. Sci., 2020, 58, 3082–3094.

Dai Z., Jiang P., Lou W., Zhang P., Bao Y., Gao X. et al. Preparation of degradable vegetable oil-based waterborne polyurethane with tunable mechanical and thermal properties. Eur. Polym. J., 2020, 139, 109994.

Kollbe A.B., Kraft S., Sun S.X. Solvent-free acid-catalyzed ringopening of epoxidized oleochemicals using stearates/stearic acid and its applications. J. Agric. Food Chem., 2012, 60, 2179–2189.

Konovalov S., Zubenko S., Patrylak L., Yakovenko A., Povazhnyi V., Burlachenko K. Chemmotological aspects of sustainable development of transport. – Sustainable Aviation. Springer, Cham., 2022. – P. 49–80.

Konovalov S., Patrylak L., Zubenko S., Okhrimenko M., Yakovenko A., Levterov A. Alkali synthesis of fatty acid butyl and ethyl esters and comparative bench motor testing of blended fuels on their basis. Chem. Chem. Technol., 2021, 15(1), 105–117.

Monono E.M., Bahr J.A., Pryor S.W., Webster D.C., Wiesenborn D.P. Optimizing process parameters of epoxidized sucrose soyate synthesis for industrial scale production. Org. Process Res. Dev., 2015, 19(11), 1683–1692.

Zubenko S.O. The simple method of vegetable oils and oleochemical products acid value determination. Catal. Petrochemistry, 2021, 31, 69–74.

International Technical Standards GOST 20298-74. [in Russian].

https://www.purolite.com/product-pdf/CT275.pdf.

Davitadze D.Z., Konovalov S.V., Zubenko S.O., Pertko O.P., Pyliavskyi V.S. Promising approaches to chemical modification of acylglycerol biomass using sulfocationites as solid acid catalysts. Bioactive compounds, new substances and materials / Proceedings of the XXVIII Scientific Conference on Bioorganic Chemistry and Petrochemistry. Kyiv: Interservis, 2023. – P. 240–245.

Davitadze D., Konovalov S., Zubenko S., Pertko O., Pyliavskyi V., Yakovenko A. Products of chemical modification of high oleic waste sunflower oil as fuel additives. Book of Abstracts of IХ International Scientific-Technical Conference “Theory and practice of rational use of traditional and alternative fuels and lubricants” (PROBLEMS OF CHEMMOTOLOGY), Kyiv-Warsaw, July 03–07, 2023, P. 120–121.