Abstract
It was established that at low temperatures MFS inhibit the oxidation of n-decan, and at temperatures close to the boiling point of the hydrocarbon, on the contrary, accelerate the transformation of the original alkane molecules. The composition of alkane transformation products in the high-temperature two-phase (gas-liquid) oxidation regime was analyzed by gas-liquid chromatography. It is shown that the transformation of n-decan molecules occurs according to the same schemes both in the case of oxidation without the additive of MFS, and in the presence of these compounds in a liquid. The work is devoted to the actual problem of increasing the energy efficiency of liquid motor fuels (gasoline, diesel and jet fuels) in transport power plants. One of the most acceptable ways to solve this problem at the present stage, which does not require capital expenditure, is to improve the processes of chemical transformations of fuel molecules in engines under the action of additives. The use of multilayer fullerene-like structures (MFS) as additives to motor fuels is proposed. The influence of additives modified MFS on the conversion of reagents in the processes of liquid-phase oxidation of n-decan by molecular oxygen at low (70°C) and high (150°C) temperatures has been studied. The change in the direction of the MFS action on chemical transformation of initial reagents depending on process temperature is experimentally revealed. It was established that at low temperatures MFS inhibit the oxidation of n-decan, and at temperatures close to the boiling point of hydrocarbons, on the contrary, accelerate the transformation of the original alkane molecules. The composition of alkane transformation products at high-temperature two-phase (gas-liquid) oxidation regime was analyzed by gas-liquid chromatography. It is shown that the transformation of n-decan molecules occurs according to the same schemes both in the case of oxidation without the additive of MFS, and in the presence of these compounds in a liquid.
References
Galyshev Yu.V., Magidovich L.E., Rumyantsev V.V. Toplivnyye problemy transportnoy energetiki. Sankt-Peterburg. Izd-vo SanktPeterburgskogo Politekhnicheskogo universiteta. 2005. 235. [In Russian].
Gusarov A.P. Potrebleniye topliva i vybrosy СO2 avtomobilyami. Zhurnal avtomobilnykh inzhenerov. 2009. 5. 48–53. [In Russian].
Safonov A.S., Ushakov A.I., Grishin V.V. Khimmotologiya goryuche-smazochnykh materialov. Sankt-Peterburg. NPIKTs. 2007. 488. [In Russian].
Danilov A.M. Primeneniye prisadok v toplivakh. Moskva. Khimizdat. 2010. 368. [In Russian].
Troshin P.A., Troshina O.A., Lyubovskaya R.N., Razumov V.F. Funktsionalnyye proizvodnyye fullerenov: metody sinteza i perspektivy ispolzovaniya v organicheskoy elektronike i biomeditsine. Ivanovo. Ivanovskiy gosudarstvennyy universitet. 2008. 310. [In Russian].
Piotrovskiy L.B., Kiselev O.I. Fullereny v biologii. Sankt-Peterburg. Rostok. 2006. 33. (In Russian).
Sidorov L.N., Yurovskaya M.A., Borshchevskiy A.Ya., Trushkov I.V., Ioffe I.N. Fullereny. Moskva. Ekzamen. 2005. 688. [In Russian].
Fullereny i fullerenopodobnyye struktury v kondensirovannykh sredakh: Sb. tez. dokl. Mn. UP «Tekhnoprint». 2002. 224. (In Russian).
Zeynalov E.B., Koβmehl G. Fullerene C60 as an antioxidant for polymers. Polym. Degrad. Stabil. 2001. 71. 197–202.
Denisov E.T., Sarkisov O.M., Likhtenshteyn G.I. Khimicheskaya kinetika. Moskva. Khimiya. 2000. 568. [In Russian].
Krusic P.J., Wasserman E., Keizer P.N., Morton J.R., Preston K.F. Radical reactions of C60. Science. 1991. 254. 1223–1225.
Morton J.R., Negri F., Preston K.F. Addition of free radicals to C60. Acc. Chem. Res. 1998. 31. 63–69.
Kovtun G.O., Zhila R.S., Kamenyeva T.M. Kinetichna model ingibuyuchoyi diyi fulerenu S60 pri okisnenni benzilovogo spirtu. Kataliz i neftehimiya. 2007. 15. 97–99. [In Ukrainian].
Kovtun. G.A., Kameneva T.M., Kochkanyan R.O. Fulleren С60 v obryve tsepey okisleniya organicheskikh soyedineniy. Kataliz i neftekhimiya. 2003. 11. 36–38. [In Russian].
Zeynalov E.B., Koβmehl G. Fullerene C60 as an antioxidant for polymers. Polym. Degrad. Stabil. 2001. 71. 197–202.
Zeynalov E.B., Allen N.S., Salmanova N.I. Radical scavenging efficiency of different fullerenes C60–C70 and fullerene soot. Polym. Degrad. Stabil. 2009. 94. 1183–1189.
Yakupova L.R., Sakhautdinov I.M., Malikova R.N., Safiullin R.L. Vliyaniye fullerena. soderzhashchego maleopimariimidnyy zamestitel. na kinetiku zhidkofaznogo radikalnotsepnogo okisleniya etilbenzola. Kinetika i
kataliz. 2019. 60(1). 25–32. [In Russian].
Safarova I.V., Sharipova G.M., Nugumanova E.F., Gerchikov A.Ya. Kineticheskiye kharakteristiki fullerena C60 v kachestve antioksidanta v reaktsii initsiirovannogo okisleniya etilbenzola. Vest. BGU. 2016. 21(1). 37–40. [In Russian].
Polunkin Ye.V., Pilyavskij V.S., Bereznickij Ya.O., Kamenyeva T.M., Levterov A.M., Avramenko A.M. Pokrashennya himmotologichnih vlastivostej dizelnogo paliva mikrodobavkoyu vuglecevih sferoyidalnih
nanochastok. Kataliz ta naftohimiya. 2020. 29. 59–64. [In Ukrainian].
Kolchin A.I., Demidov V.P. Raschet avtomobilnykh i traktornykh dvigateley. Moskva. Vysshaya shkola. 2008. 496. [In Russian].
Rud A.D., Kuskova N.I., Boguslavskiy L.Z., Kirian I.M., Zelinskaya G.M, Belyy N.M. Strukturno-energeticheskiye aspekty sinteza uglerodnykh nanomaterialov vysokovoltnymi elektrorazryadnymi metodami. Khimiya i khimicheskaya tekhnologiya. 2013. 56(7). 99–104. [In Russian].
Denisov E.T., Azatyan V.V. Ingibirovaniye tsepnykh reaktsiy. Chernogolovka. Izd-e RAN. 1997. 288. [In Russian].
Emanuel N.M., Denisov E.T., Majzus Z.K. Tsepnyye reaktsii okisleniya uglevodorodov v zhidkoy faze. М.: Nauka, 1965. 375 с. [In Russian].