Two component oxide compositions based on TiO2 rutile: ultrasonic treatment, their physicochemical and photocatalytic properties
макет статті

Keywords

complex oxide compositions, ultrasonic treatment, photocatalysis, metronidazole destruction

How to Cite

Kiziun, O. V., Sachuk, O. V., Zazhigalov, V. O., Zabolotnii, Y. V., & Kotynska, L. Y. (2025). Two component oxide compositions based on TiO2 rutile: ultrasonic treatment, their physicochemical and photocatalytic properties. Catalysis and Petrochemistry, (36), 44-56. Retrieved from https://kataliz.org.ua/index.php/journal/article/view/127

Abstract

The creation of oxide two-component systems based on TiO2 rutile was studied. Influence of ultrasound treatment (UST) of these mixtures on their properties was established. The mixtures treatment less influences on the ratio of intensity of (110)/(101) reflexes of TiO2 what testify any structural change of this oxide but in same time little increase of its particles size was observed. The little increase of the dimension particles for second oxide after UST for the studied mixtures excluding TiO2/MgO and TiO2/ZnO was observed. The partial transformation of MgO to Mg(OH)2 as result of TiO2/MgO composition treatment was shown which accompanied by decrease of MgO particles size. In the case of TiO2/ZnO composition the partial destruction of ZnO was observed. The increase of the pores radius after UST with the change of surface element ratio determined by EDX method can testify that strong interaction between oxides takes place. This fact leads to an increase the band gap for the mixture in comparison with initial TiO2 with its average value between characteristic for TiO2 and other oxide in mixture. The study of photocatalytic properties of the samples in metronidazole (MN) oxidative decomposition in water shows that for all compositions, excluding TiO2/ZnO where the activity is connected with more active ZnO in this reaction but not TiO2, a decrease of initial rate constant Kd was observed. The reduction of rate constant was connected with a decrease of TiO2 content in the mixtures and introduced value of rate constant determined to quantity of TiO2 demonstrate its increase in comparison to individual TiO2.This fact testify the strong interaction in complexes systems between two oxides. Obtained result permits to realize the MN photocatalytic degradation in water with an increase of the complexes catalyst content in reaction mixture what leads to an increase both rate constant and degree of antibiotic transformation. It was established that UST increased the stability of the samples in MN transformation and as result the conversion of MN has more value than in initial mixtures. An increase of degradation degree after UST of the samples correlates with the growth of medium pore radius in result of this treatment what can be connected with an increase of sample surface accessible to UV irradiation.  It was shown that obtained composites demonstrate better properties in MN destruction in water in comparison with data known from the literature.

макет статті

References

Klavarioti M., Mantzavinos D., Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Inter., 2009, 35(2), 402–417.

Ahmadpour N., Nowrouzi M., Avargani V.M., Sayadi M.H., Zendehboudi S. Design and optimization of TiO2-based photocatalysts for efficient removal of pharmaceutical pollutants in water: Recent developments and challenges. J. Water Proc. Eng., 2024, 57, 1–37.

Kumar A., Khan M., He J., M.C. Lo I. Recent developments and challenges in practical application of visibleelightedriven TiO2-based heterojunctions for PPCP degradation: A critical review. Water Res., 2020. 170, 115356–115374.

Kummerer K. Pharmaceuticals in the Environment. Annual Rev. Env. Res., 2010, 35, 57.

National Toxicology Program, Department of Health and Human Services. Report on Carcinogens, Fifteenth Edition. Metronidazole CAS No. 443-48-1, 2021, 1–2.

Okhovat N., Hashemi M., Golpayegani A.A. Photocatalytic decomposition of Metronidazole in aqueous solutions using titanium dioxide nanoparticles. J. Mater. Environ. Sci., 2015, 6(3), 792–799.

Elghniji K., Hentati O., Mlaik N., Mahfoudh A., Ksibi M. Photocatalytic degradation of 4-chlorophenol under P-modified TiO2/UV system: Kinetics, intermediates, phytotoxicity and acute toxicity. J. Environ. Sci., 2012, 24(3), 479–487.

Trovo A.G., Paiva V.A.B., Costa Filho B.M., Machado A.E.H., Oliveira C.V., Santos R.O., Daniel D. Photolytic Degradation of Chloramphenicol in Different Aqueous Matrices Using Artificial and Solar Radiation: Reaction Kinetics and Initial Transformation Products. J. Braz. Chem. Soc., 2014, 25(11), 2007–2015.

Baniamer M., Almasi A., Sharifnia Sh. Degradation of Diclofenac Sodium under Solar Light Irradiation by Photocatalytic Performance of ZnO and V2O5. Iranian J. Chem. Eng., 2018, 15(4), 3–16.

Shmychkova O., Protsenko V., Velychenko O. Ochyshchennia stichnykh vod vid farmatsevtychnykh preparativ: ohliad literatury. Vopr. Khim. i Khim. Tekhnol., 2021, 3, 4–31.

Eddy D.R., Permana M.D., Sakti L.K., Sheha G.A.N., Solihudin, Hidayat S., Takei T., Kumada N., Rahayu I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomater., 2023. 13(4), 1–31.

Mihai S., Cursaru D.L., Matei D., Manta A.M., Somoghi R., Branoiu G. Rutile RuxTi1-xO2 nanobelts to enhance visible light photocatalytic activity. Sci. Repor., 2019, 9(18798), 1–8.

Zhao W., Zhang J., Pan J., Qiu J., Niu J., Li C. One-step electrospinning route of SrTiO3-modified Rutile TiO2 nanofibers and its photocatalytic properties. Nanoscale Res. Lett., 2017, 12(371), 1–7.

Zhang J., Zhou P., Liu J., Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys., 2014, 16, 20382–20386.

Rozman N., Nadrah P., Cornut R., Jousselme B., Bele M., Drazi G., Gabercek M., Kunej S., Skapin A.S. TiO2 photocatalyst with single and dual noble metal co-catalysts for efficient water splitting and organic compound removal. Inter. J. Hydr. Energy., 2021, 46(65), 32871–32881.

Maeda K. Photocatalytic properties of rutile TiO2 powder for overall water splitting. Catal. Sci. Technol., 2014, 4(7), 1949–1953.

Zazhigalov V.A., Sydorchuk V.V., Khalameida S.V., Kuznetsova L.S. Mechanochemical synthesis of BaTiO3 from barium titanyl oxalate. Inorg. Mat., 2008, 44(6), 641–645.

Zazhigalov V.A., Sachuk O.V., Kopachevska N.S., Starchevskyy V.L., Sawlowicz Z. Effect of ultrasonic treatment on formation of nanodimensional structures in ZnO-MoO3 system. Theor. Experim. Chem. 2017, 53(1), 53–60.

Suslick K.S., Hyeon T., Fang M., Cichowlas A.A. Sonochemical synthesis of nanostructured catalysts. Mater. Sci. and Eng., 1995, 204(1–2), 186–192.

Stucchi M., Cerrato G., Bianchi C.L. Ultrasound to improve both synthesis and pollutants degradation based on metal nanoparticles supported on TiO2. Ultrason. Sonochem., 2019. 51, 462–468.

Yi H., Wang Y., Diao L., Xin Y., Chai C., Cui D., Ma D. Ultrasonic treatment enhances the formation of oxygen vacancies and trivalent manganese on α-MnO2 surfaces: Mechanism and application. J. Coll. Interf. Sci., 2022, 626, 629–638.

Priyadarshi A., Khavari M., Subroto T., Prentice P., Pericleous K., Eskin D., Durodola J., Tzanakis I. Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements. Ultrason. Sonochem., 2021, 79, 105792–105803.

Yazdani-Darki S., Eslami-Kalantari M., Zare H. Study of double-using ultrasonic effects on the structure of PbO nanorods fabricated by the sonochemical method. Ultrason. Sonochem., 2021, 79, 105797–105803.

Lee D.J., Kumar G.M., Sekar S., Jeon H.C., Kim D.Y., Pugazhendi Ilanchezhiyan. Ultrasonic processing of WO3 nanosheets integrated Ti3C2 MXene 2D-2D based heterojunctions with synergistic effects for enhanced water splitting and environmental remediation. Ultrason. Sonochem., 2023, 101, 106681–106690.

Sachuk O.V., Zazhigalov V.O., Kiziun O.V., Hes N.L., Mylin A.M., Kotynska L.Yo., Kuznetsova L.S., Shcherbakov S.M., Kordan V.M. Influence of mechanochemical and sonochemical method of preparation of TiO2/ZrO2 composites on photocatalytic performance in prometrine decomposition. Theor. Exp. Chem., 2022, 58(3), 190–197.

Sachuk O.V., Zazhigalov V.O., Diyuk O.A., Dulian P., Starchevskyy V.L., Kuznetsova L.S., Kizyun O.V. Properties of Ca(OH)2/TiO2 composites modified by mechanochemical and ultrasonic methods. Mater. Sci. 2022, 57(6), 873–881.

Stucchi M., Cerrato G., Bianchi C.L. Ultrasound to improve both synthesis and pollutants degradation based on metal nanoparticles supported on TiO2. Ultrason. Sonochem., 2019, 51, 462–468.

Thamaphat K., Limsuwan P., Ngotawornchai B. Phase Characterization of TiO2 Powder by XRD and TEM. Kasetsart J. (Nat. Sci.)., 2008, 42, 357–361.

Zaidi B., Belghit S., Ullah M.S., Hadjoudja B., Guerraoui A., Gagui S., Houaidji N., Chouial B., Shekhar C. Structure and properties of nanoscale and mesoscopic materials. Metallofiz. Noveishie Tekhnol., 2019, 41(8), 1121–1126.

Hansen H.E., Seland F., Sunde S., Burheim O.S., Pollet B.G. Frequency controlled agglomeration of Pt-nanoparticles in sonochemical synthesis. Ultrason. Sonochem., 2022, 85, 105991–106000.

Gielen B., Jordens J., Thomassen L.C.J., Braeken L., Van Gerven T. Agglomeration Control during Ultrasonic Crystallization of an Active Pharmaceutical Ingredient. Crystals., 2017, 7(2), 40–60.

Sydorchuk V., Khlameida S., Zazhigalov V., Skubiszewska-Zieba J., Leboda R., Wieczorek-Ciurowa K. Influence of mechanochemical activation in various media on structure of porous and non-porous silicas. Appl. Surf. Sci., 2010, 257, 446–450.

Sachuk O., Kopachevska N., Kuznetsova L., Zazhigalov V., Starchevskyy V. Influence of ultrasonic treatment on the properties of ZnO-MoO3 oxide system. Chem. Chem. Techn., 2017, 11(2), 152–157.

Sachuk O.V., Zazhyhalov V.O., Kuznetsova L.S., Tsyba M.M. Vlastyvosti Zn-Mo oksydnoi systemy, syntezovanoi shliakhom mekhanokhimichnoi obrobky. Khim. Fiz. Tekhn. Poverkhni., 2016, 7(3), 309–321.

Cavalcante L.S., Sczancoski J.C., Li M. S., Longoa E., Varela J.A. β-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2012, 396, 346–351.

Kriukov A.Y., Stroiuk A.L., Kuchmyi S.Ia., Pokhodenko V.D. Nano-fotokatalyz. – Kyev, Akademperiodyka, 2013). – 617 p.

Stando K., Kasprzyk P., Felis E., Bajkacz S. Heterogeneous photocatalysis of metronidazole in aquatic samples. Molekules, 2021, 26, 1–16.

Tran M.L., Fu C.C., Juang R.S. Removal of metronidazole by TiO2 and ZnO photocatalysis: a comprehensive comparison of process optimization and transformation products. Environ. Sci. Pollut. Res., 2018, 25(28), 28285–28295.

Zazhigalov V.O., Brazhnyk D.V., Sachuk O.V., Kiziun O.V., Bacherikova I.V., Akessandri I., Depero L.E. Photocatalytic properties of zinc oxide prepared by combustion of jelled precursor. Theor. Experim. Chem., 2023, 59(1), 25–31.