Abstract
Polyoxypropylene with a molecular weight of one to several thousand is one of the key starting components in the production of polyurethane foams, coatings and adhesives. In industry, polyoxypropylene is traditionally produced by polymerization of propylene oxide (PO) using potassium or sodium hydroxides and low molecular weight hydroxyl initiators, such as glycerol and propylene glycol. The significant number of side processes is the main disadvantage of using alkaline catalysts, which leads to a decrease in the molecular weight of polyoxypropylene. Modern double metal cyanide (DMC) catalysts allow the production of polyols with much higher molecular weights and much lower polydispersity, but they are easily deactivated in the presence of low molecular weight hetero-organic compounds. This paper presents the results of research related to the polymerization process of propylene oxide in the presence of potassium glycerate and subsequent polymerization of PO using the resulting oligomers and DMC catalyst (Arcol® Catalyst 3). The synthesized polyols were analysed by gel permeation chromatography and 13C NMR spectroscopy. For successful initiation of the polymerization process, the optimal molar ratio of the first portion of OP to glycerol initiator is approximately 3:1, and the optimal feed rate of OP per 1 mol of initiator is about 1.5 mol OP per hour. A procedure for obtaining propylene oxide oligomers using potassium glycerate with a given molecular weight in the range Mn = 500-1300 was developed. The synthesis of polyols with Mn > 3000 was carried out using the effective zinc hexacyanocobaltate DMC catalyst Arcol® Catalyst 3. According to 13C NMR spectra of polyols, the two terminal OH groups of glycerol form two polymer chains, the middle OH group of the secondary carbon atom of glycerol does not participate in polymerization.
References
Polypropylene Oxide Market, by Production Process. Global Opportunity Analysis and Industry Forecast, 2023–2032. https://www.alliedmarketresearch.com/polypropylene-oxide-market-A07541
The Propylene Oxide Market is Predict to reach USD 36.3 Billionby 2031, at a CAGR of 5.7 % https://www.kbvresearch.com/press-release/propylene-oxide-market/
Kirk RE. Kirk-Othmer Encyclopedia of Chemical Technology. – Wiley, NewYork, 1991.
Patent US 6077978. McDaniel K.G., Perry M.J., Hayes J.E. Direct polyoxyalkylation of glycerine with double metal cyanide catalysis, 2000.
Huang Yi-J., Qi G.-R., Wang Y.-H. Controlled Ring-Opening Polymerization of Propylene Oxide Catalyzed by Double Metal-Cyanide Complex. J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 1142–1150.
Chruściel A., Hreczuch W., Janik J., Czaja K., Dziubek K., Flisak, Z., Swinarew A. Characterization of a double metal cyanide (DMC)-type catalyst in the polyoxypropylation process: effects of catalyst concentration. Industrial & Engineering Chemistry Research, 2014, 53(16), 6636–6646.
Patent US 3278459. Herold R.J. Method of making a polyether using a double metal cyanide complex compound. 1966.
Patent US 3278457. Milgrom J. Method of making a polyether using a double metal cyanide complex compound. 1966.
Patent US 5470813 Le-Khac B. Double metal cyanide complex catalysts. 1995.
Щуцький І.В., Брей В.В., Шаранда М.Є., Каськов Є.В., Дагаєв О.Ю., Підсадюк І.М., Милін А.М., Михайленко Є.О., Зінченко О.Ю. Нова НРРОа технологія одержання пропіленоксиду: від лабораторного реактора до комерційної пiлотної установки. Каталіз та нафтохімія, 2021, 32, 1–8.
Брей В.В., Щуцький І.В., Підсадюк І.М. Нова вітчизняна HPPOa технологія виробництва пропіленоксиду. Вісник НАН України, 2022, 1, 63–68.
Ionescu M. Chemistry and technology of polyols for polyurethanes Rapra Technology Limited, UK, 2005.
Oguni N., Shinohara S., Lee K. 13C NMR study of poly (propylene oxide) and poly (1-butene oxide). Polymer Journal, 1979, 11(10), 755–761.
Gabriel C., Flores-Sandoval C.A., Huitron N., Herrera R., Zamudio-Rivera L.S., Beltrán H.I., Vázquez F. Theoretical and experimental studies of the initiator influence on the anionic ring opening polymerization of propylene oxide. Journal of Molecular Structure, 2008, 879(1–3), 40–52.