On the mechanism of influence of carbon nanoparticle additives on high-temperature oxidation of diesel fuels
макет статті

Keywords

energy efficiency of motor fuels, liquid-phase oxidation of hydrocarbons with oxygen, additives to petroleum products, carbon nanoclusters

How to Cite

Pylyavsky, V. S., Polunkin, Y. V., Yevdokymenko, V. O., Kameneva, T. M., Haidai, O. O., Melnykova, S. L., & Bogomolov, Y. I. (2025). On the mechanism of influence of carbon nanoparticle additives on high-temperature oxidation of diesel fuels. Catalysis and Petrochemistry, (36), 86-97. Retrieved from https://kataliz.org.ua/index.php/journal/article/view/131

Abstract

The problem of increasing the energy efficiency of liquid motor fuels due to ultra-small amounts of nanoparticles is considered. The relationship between the completeness of fuel combustion in engines and the preliminary liquid-phase oxidation of hydrocarbons in atomized droplets is discussed. High-temperature oxidation at 150 °С with air oxygen of model diesel fuel components in a bubble-type reactor was carried out. The effect of carbon spheroidal nanoclusters on the dynamics of changes in the composition of the liquid phase during oxidation under the same conditions of n-decane and n-dodecane was studied by gas-liquid chromatography. It is shown that the effect of nanoparticles on the conversion of hydrocarbons in a liquid oxidate can vary depending on the proximity of the oxidation process temperature and the boiling point of the liquid. For high-boiling n-dodecane (216 °C) under oxidation conditions at 150 °C, the presence of nanoparticles in the solution slows down the change in the composition of the liquid oxidate. When oxidizing a more low-boiling n-decane (174 °C), nanocluster additives accelerate the reduction of the initial hydrocarbon content in the liquid mass. The obtained results are explained by the simultaneous interaction of hydrocarbon molecules with oxygen in the liquid-phase and gas-phase reaction regions. Carbon nanoclusters inhibit chain reactions of liquid-phase oxidation in the kinetic mode, but activate gas-phase oxidation by accelerating the diffusion stage. Acceleration of diffusion and evaporation of hydrocarbons from the liquid phase is explained by a change in the supramolecular structure of the solution under the influence of nanoparticles with a decrease in viscosity. It is shown that the non-monotonic nature of the change in the viscosity of n-decane from the content of nanoclusters in the solution correlates with the extreme non-monotonic dependence of the energy efficiency of diesel fuel on the concentration of such additives. A possible dependence between the duration of the stages of evaporation of low-boiling components from sprayed droplets and the completeness of combustion of mixed motor fuels is considered.

макет статті

References

Wallington T.J., Anderson J.E., Dolan R.H., Winkler S.L. Vehicle Emissions and Urban Air Quality: 60 Years of Progress. Atmosphere, 2022, 13(650), 1–19.

Choudhary R.B., Jha M.K. Action mechanisms of boundary lubrication additives - a review, part I. Lubrication Science, 2004, 16, 405–19.

Ghafoori M., Ghobadian B., Najafi G., Layeghi M., Rashidi A., Rashidi A. Effect of nano-particles on the performance and emission of a diesel engine using biodiesel-diesel blend. International Journal of Automotive and Mechanical Engineering, 2015, 12, 3097–3108.

Gad M.S., Yehia K., Abdelhakeem A.A. Effect of multi carbon nanosheet on diesel engine performance. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26, 722–728.

Levterov A.M., Levterov A.A. Vliyanie na pokazateli porshnevyh dvigatelej biokomponentov i nanomaterialov. Dviguni vnutrishnogo zgoryannya, 2021, 2, 12–23. [In Russian].

Valihesari M., Pirouzfar V., Ommi F., Zamankhan F. Investigating the effect of Fe2O3 and TiO2 nanoparticle and engine variables on the gasoline engine performance through statistical analysis. Fuel, 2019, 254, 115618.

Meda L., Marra G., Galfetti L., Severini F., DeLuca L.T. Nanocomposites for rocket solid propellants. Composites Sci. and Technol., 2005, 27(5), 769–773.

Rossi C., Est`eve A., Vashishta P. Nanoscale energetic materials. J. Phys. Chem. Solids, 2010, 71(2), 57–58.

Jayaraman K., Anand K.V., Chakravarthy S.R., Sarathi R. Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion. Combust. Flame, 2009, 156(8), 1662–1673.

Eastman J., Choi S. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 2001, 78(6), 718–720.

Gajdaj O.O, Pilyavskij V.S., Polunkin Ye.V. Polipshennya ekspluatacijnih vlastivostej etanolnih motornih paliv mikrodozami karbonovih sferoyidalnih nanoklasteriv. Naukoyemni tehnologii (Science-based technologies), 2016, 1(29), 3–8. [In Ukrainian].

Polunkin Ye.V., Pilyavskij V.S., Bereznickij Ya.O., Kamenyeva T.M., Lyevtyerov A.M., Avramenko A.M. Pokrashennya himmotologichnih vlastivostej dizelnogo paliva mikrodobavkoyu vuglecevih sferoyidalnih nanochastok. Catalysis & Petrochemistry, 2020, 29, 59–66.

Pilyavskij V.S., Polunkin Ye.V., Kamenyeva T.M., Melnikova S.L., Gajdaj O.O., Bogomolov Yu.I. Temperaturna inversiya diyi bagatosharovih fulerenopodibnih struktur v okisnenni n-dekanu molekulyarnim kisnem. Catalysis & Petrochemistry, 2021, 31, 99–105.

Gardiner W.C.Jr. Gas-Phase Combustion Chemistry. Springer. 2012, 556.

Stark M.S., Wilkinson J.J., Smith J.R.L., Alfadhl A., Pochopien B.A. Autoxidation of Branched Alkanes in the Liquid Phase. Ind. Eng. Chem. Res., 2011, 50(2), 817–823.

Mittal K.L. Micellization, Solubilization and Microemulsions. V. 2. Springer, 2012, 460.

Liu W., Zhang Z., Chen S., Xue Q. The research and application of colloids as lubricants. J. Disp. Sci. Technol., 2000, 21(4), 469–490.

Gajdaj O.O. Ekspluatacijni vlastivosti etanolnih benziniv z nanorozmirnimi sferoyidalnimi karbonovimi klasterami: avtoref. dis. kand. tehn. nauk: 05.17.07. Nacionalnij aviacijnij universitet. K., 2019. 26. [In Ukrainian].

Polunkin E.V., Pyliavskyi V.S., Gaidai O.O., Melnykova S.L., Spaska O.A., Matveeva I.V. Influence of addition of exomodified carbon nanospheres on the structuration in ethanol motor fuels. Kataliz ta naftohimiya, 2021, 31, 99–105.

Schwenke A.M., Hoeppener S., Schubert U.S. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Advanced Materials, 2015, 27(28), 4113–4141.

Chebbi R., Selim M.S. The Stefan problem of evaporation of a volatile component from a binary liquid mixtures. Heat and Mass Transfer, 2006, 42, 238–247.

Lage P.L.C., Rangel R.H., Hackenberg C.M. Multicomponent heat and mass transfer for flow over a droplet. Int. J. Heat and Mass Transfer, 1993, 34(14), 3573–3581.

Sirignano W.A. Fuel dropler vaporization and spray combustion theory. Prog. Energy Comb. Sci., 1983, 9, 291–322.

Sazhin S.S., Advanced models of fuel droplet heating and evaporation. Prog. Energy Comb. Sci., 2006, 32, 162–214.

Sazhin S. Droplets and Sprays. Springer-Verlag, London, 2014, 345.

Olifirenko Yu.A., Kopejka A.K., Kalinchak V.V., Darakov D.S., Golovko V.V. Modelirovanie ispareniya kapel binarnyh smesej nizshih spirtov. Fizika aerodispersnih sistem, 2016, 53, 96–104. [In Russian].

Bochkareva E.M., Miskiv N.B., Nazarov A.D., Terekhov V.V., Terekhov V.I. Experimental study of evaporating droplets suspended ethanol-water solution under conditions of forced convection. Interfacial Phenomena and Heat Transfer, 2018, 6(2), 115–127.

Gan Y., Qiao L. Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections. International Journal of Heat and Mass Transfer, 2011, 54, 4913–4922.

Gan Y., Qiao L. Radiation-Enhanced Evaporation of Ethanol Fuel Containing Suspended Metal Nanoparticles. International Journal of Heat and Mass Transfer, 2012, 55, 5777–5782.

Liu Y., Block D. Stokes-Einstein relation for binary mixtures. Computer Physics Communications, 2024, 300, 1–5.