Efficient hydrogen production by steam reforming of ethanol over ferrite catalysts
Article PDF

Keywords

ethanol, steam reforming, ferrite catalysts, hydrogen

How to Cite

Dolgikh, L., Stolyarchuk, I., Staraya, L., Vasylenko, I., Pyatnitsky, Y., & Strizhak, P. (2020). Efficient hydrogen production by steam reforming of ethanol over ferrite catalysts. Catalysis and Petrochemistry, (29), 1-10. https://doi.org/10.15407/kataliz2020.29.001

Abstract

Steam reforming of ethanol is considered nowadays to be attractive mode of production of hydrogen as the most viable energy carrier for the future. Additionally, producing hydrogen from ethanol steam reforming would be environmentally friendly. Ethanol can be prepared from agricultural residues and hence is a renewable resource. Its producing from biomass fermentation is enough simple and cheap way. Besides operating conditions, the use of catalysts plays a crucial role in hydrogen production through ethanol re-forming. Different catalysts have been used for the steam reforming of ethanol, in the great majority of cases, supported noble metals, nickel and cobalt. The present work is devoted to investigation of the ethanol steam reforming over ferrites as novel oxide type of catalysts for this reaction. The ferrite catalysts, MFe2O4 (M = Mg, Mn, Fe, Zn), have been prepared by coprecipitation method; to characterize the catalysts, the methods of X-ray diffraction, electron diffraction, BET, temperature programmed desorption of CO2, the thermal gravimetry have been used. The catalytic experiments have been per-formed at atmospheric pressure in the temperature range 573-823 K. The main reaction products were acetaldehyde, acetone, CO2 and H2. It is important to note, that CO, which is undesirable impurity in hydrogen, was not appeared in the reaction products. At relatively low temperatures, high selectivity for acetone (71.3 %), that is very close to its theoretical value (75 %), was observed for FeFe2O4. Thus, the FeFe2O4 ferrite can be con-sidered as an efficient catalyst for the direct conversion of ethanol to acetone. At higher temperatures, selectivity to acetone decreases due to acetone conversion to CO2 and the target product H2. The selectivity to hydrogen increases up to 823 K for all investigated ferrites. Maximum hydrogen yield (83.4 %) was achieved for MnFe2O4, therefore it is a promising object for further study.

https://doi.org/10.15407/kataliz2020.29.001
Article PDF

References

Ghasemzadeh K., Jalilnejad E., Tilebon S.M.S. Hydrogen produc-tion technologies from ethanol. Ethanol Science and Engineering. Else-vier. 2018. 307-340. https://doi.org/10.1016/B978-0-12-811458-2.00012-2

Lazar M. D., Senila L., Dan M., Mihe M. Crude Bioethanol Re-forming Process: The Advantage of a Biosource Exploitation. Ethanol Science and Engineering. Elsevier. 2018. 257-288. https://doi.org/10.1016/B978-0-12-811458-2.00010-9

Liu Z., Senanayake S.D., Rodriguez J.A. Catalysts for the Steam Reforming of Ethanol and Other Alcohols. Ethanol Science and Engi-neering. Elsevier. 2018. 133-158. 574 p. https://doi.org/10.1016/B978-0-12-811458-2.00005-5

Contreras J.L., Salmones J., Colin-Luna J.A., Nuno L., Quintana B., Cordova I., Zeifert B., Tapia C., Fuentes G.A. Catalysts for H2 pro-duction using the ethanol steam reforming (a review). Int. J. Hydrogen Energy. 2014. 39. 18835-18853. https://doi.org/10.1016/j.ijhydene.2014.08.072

Pyatnitsky Y.I., Dolgykh L.Yu., Stolyarchuk I.L. Strizhak P.E. Production of hydrogen by steam reforming of ethanol. Theor. Exp. Chem. 2013. 49. 272-297. https://doi.org/10.1007/s11237-013-9327-5

Mattos L.V., Jacobs G., Davis B.H. Noronha F.B. Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem. Rev. 2012. 112. 4094-4123. https://doi.org/10.1021/cr2000114

Piscina P.R., Homs N. Use of biofuels to produce hydrogen (refor-mation processes). Chem. Soc. Rev. 2008. 37. 2459-67. https://doi.org/10.1039/b712181b

Ni M., Leung D.Y.C., Leung M.K.H. A review on reforming bio-ethanol for hydrogen production. Int. J Hydrogen Energy. 2007. 32. 3238-3247. https://doi.org/10.1016/j.ijhydene.2007.04.038

Vaidya P. D., Rodrigues A. E. Review. Insight into steam reform-ing of ethanol to produce hydrogen for fuel cells. Chem. Eng. J. 2006. 117. 39-49. https://doi.org/10.1016/j.cej.2005.12.008

Haryanto A., Fernando S., Murali N., Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy & Fuels. 2005. 19. 2098-2106. https://doi.org/10.1021/ef0500538

Simson A., Farrauto R., Castaldi M. Steam reforming of etha-nol/gasoline mixtures: Deactivation, regeneration and stable perfor-mance. Appl. Catal. B. 2011. 106. 295- 303. https://doi.org/10.1016/j.apcatb.2011.05.027

Bilal M., Jackson S.D. Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts: The effect of impurities on selectivity and cata-lyst deactivation. Appl. Catal. A. 2017. 529. 98-107. https://doi.org/10.1016/j.apcata.2016.10.020

Palma V., Castaldoa F., Ciambellia P., Iaquaniellob G. CeO2-supported Pt/Ni catalyst for the renewable and clean H2 production via ethanol steam reforming. Appl. Catal. B. 2014. 145. 73-84. https://doi.org/10.1016/j.apcatb.2013.01.053

Cifuentes B., Hernández M., Monsalve S., Cobo M. Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 cata-lyst: Synergistic effect of the Si:Ce ratio on the catalyst performance. Appl. Catal. A. 2016. 523. 283-293. https://doi.org/10.1016/j.apcata.2016.06.014

González-Gil R., Herrera C., Larrubia M.A., Mariño F., Laborde M., Alemany L.J. Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study. Int. J. Hydrogen Energy. 2016. 41.16786-16796. https://doi.org/10.1016/j.ijhydene.2016.06.234

Greluk M., Słowik G., Rotko M., Machocki A. Steam reforming and oxidative steam reforming of ethanol over PtKCo/CeO2 catalyst. Fuel. 2016. 183. 518-530. https://doi.org/10.1016/j.fuel.2016.06.068

Auprêtre F., Descorme C., Duprez D. Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal. Comm. 2002. 3. 263-267. https://doi.org/10.1016/S1566-7367(02)00118-8

Liguras D.K., Kandarides D.I., Verykios X.E. Production of hy-drogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl. Catal. B. 2003. 43. 345-354. https://doi.org/10.1016/S0926-3373(02)00327-2

Salge J.R., Deluga G.A., Schmidt L.D. Catalytic partial oxidation of ethanol over noble metal catalysts. J. Catal. 2005. 235. 69-78. https://doi.org/10.1016/j.jcat.2005.07.021

Cai W., Zhang B., Li Y., Xu Y., ShenW. Hydrogen production by oxidative steam reforming of ethanol over an Ir/CeO2 catalyst. Catal. Comm. 2007. 8. 1588-1594. https://doi.org/10.1016/j.catcom.2007.01.017

Wang K., Dou B., Jiang B., Zhang Q., Li M., Chen H., Xu Y. Ef-fect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers. Int. J. Hydrogen Energy. 2016. 41. 17334-17347. https://doi.org/10.1016/j.ijhydene.2016.07.261

Ramírez-Hernández G.Y., Viveros-García T., Fuentes-Ramírez R., Galindo-Esquivel I.R. Promoting behavior of yttrium over nickel supported on alumina-yttria catalysts in the ethanol steam reforming reaction. Int. J. Hydrogen Energy. 2016. 41. 9332-9343. https://doi.org/10.1016/j.ijhydene.2016.04.080

Biswas P., Kunzru D. Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst. Chem. Eng. J. 2008. 136. 41-49. https://doi.org/10.1016/j.cej.2007.03.057

Frusteri F., Freni S., Chiodo V., Donato S., Bonura G., Cavallaro S. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. Int. J. Hydrogen Energy 2006. 31. 2193 - 2199. https://doi.org/10.1016/j.ijhydene.2006.02.024

Fatsikostas A.N., Kondarides D.I., Verykios X.E. Steam reform-ing of biomass-derived ethanol for the production of hydrogen for fuel cell applications. J. Catal. 2004. 225. 439-452.

Yu N., Zhang H., Davidson S.D., Sun J., Wang Y. Effect of ZnO facet on ethanol steam reforming over Co/ZnO. Catal. Commun. 2016. 93-97. https://doi.org/10.1016/j.catcom.2015.10.018

Song H., Zhang L., Ozkan U.S. The effect of surface acidic and basic properties on the performance of cobalt-based catalysts for etha-nol steam reforming. Top. Catal. 2012. 55. 1324-1331. https://doi.org/10.1007/s11244-012-9918-8

Song H., Ozkan U.S. Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. J. Catal. 2009. 261. 66-74. https://doi.org/10.1016/j.jcat.2008.11.006

Llorca J., Homs N., Sales J., Piscina1 P.R. Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reform-ing. J. Catal. 2002. 209. 306-317. https://doi.org/10.1006/jcat.2002.3643

Soykal I.I., Bayram В, Sohn H., Gawade P., Miller J. T., Ozkan U.S. Ethanol steam reforming over Co/CeO2 catalysts: Investigation of the effect of ceria morphology. Appl. Catal. A. 2012. 449. 47-58. https://doi.org/10.1016/j.apcata.2012.09.038

Muroyama H., Nakase R., Matsui T., Eguchi K. Ethanol steam reforming over Ni-based spinel oxide. Int. J. Hydrogen Energy. 2010. 35 1575-1581. https://doi.org/10.1016/j.ijhydene.2009.12.083

Barroso M.N., Gomez M.F., Arrua L.A., Abello M.C. Reactivity of aluminium spinels in the ethanol steam reforming reaction. Catal. Lett. 2006. 109. 13-19. https://doi.org/10.1007/s10562-006-0051-9

Li Z., Yi W., Qun H. Preparation and properties of K2NiF4-type perovskite oxides La2NiO4 catalysts for steam reforming of ethanol. Trans. Nonferrous Met. Soc. China. 2009. 19. 1444-1449. https://doi.org/10.1016/S1003-6326(09)60048-0

Chen S.Q., Liu Y. LaFeyNi1-yO3 supported nickel catalysts used for steam reforming of ethanol. Intern. J. Hydrogen Energy. 2009. 34. 4735-4746. https://doi.org/10.1016/j.ijhydene.2009.03.048

Ma F., Chu W., Huang L., Yu X., Wu Y. Steam reforming of ethanol over Zn-doped LaCoO3 perovskite nanocatalysts. Chin. J. Catal. 2011. 32. 970-977. https://doi.org/10.1016/S1872-2067(10)60218-5

Stolyarchuk I.L., Dolgikh L.Yu., Vasilenko I.V., Pyatnitsky Yu.I., Strizhak P.E. Catalysis of steam reforming of ethanol by nanosized manganese ferrite for hydrogen production. Theor. Exp.Chem. 2012. 48. 129-134. https://doi.org/10.1007/s11237-012-9250-1

Kim D.K., Mikhaylova M., Zhang Yu, Muhammed M. Protec-tive Coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 2003. 15. 1617-1627.https://doi.org/10.1021/cm021349j

Liu C.-P., Li M.-W., Cui Z. Huang J.-R., Tian Y.-L., Lin T., Mi W.-B. Comparative study of magnesium ferrite nanocrystallites prepared by sol-gel and coprecipitation methods. J. Mater. Sci. 2007. 42. 6133-6138. https://doi.org/10.1007/s10853-006-1070-z

Philip J., Gnanaprakash G., Panneerselvam G., Antony M. P., Jayakumar T., Raj B. Effect of thermal annealing under vacuum on the crystal structure, size, and magnetic properties of ZnFe2O4 nanoparticles. J. Appl. Phys. 2007. 102. 054305.https://doi.org/10.1063/1.2777168

Dolgykh L., Stolyarchuk I., Deynega I., Strizhak P. The use of in-dustrial dehydrogenation catalysts for hydrogen production from bio-ethanol. Int. J. Hydrogen Energy. 2006. 31. 1607-1610. https://doi.org/10.1016/j.ijhydene.2006.06.028

Giri J., Sriharsha T., Asthana S., Tumkur K., Rao G., Nigam A.K., Dhirendra B. Synthesis of capped nanosized Mn1−xZnxFe2O4 (0⩽x⩽0.8) by microwave refluxing for bio-medical applications. J. Magnet. Mag-net. Mater. 2005. 293. 55-61. https://doi.org/10.1016/j.jmmm.2005.01.043

Rana S., Philip J., Raj B. Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mater. Chem. Phys. 2010. 124. 264-69. https://doi.org/10.1016/j.matchemphys.2010.06.029

Rethwisch D.G., Dumesic J.A. Effect of metal-oxygen bond strength on properties of oxides. 1. Infrared spectroscopy of adsorbed carbon monoxide and carbon dioxide. Langmuir. 1986. 2. 73-79. https://doi.org/10.1021/la00067a013

Jensen M.B., Pettersson L.G.M., Swang O., Olsbye U. CO2 sorption on MgO and CaO surfaces: a comparative quantum chemical cluster study. J. Phys. Chem. B. 2005. 109 16774-16781. https://doi.org/10.1021/jp052037h

Díez V.K., Apestegua C.R., Di Cosimo J.I. Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. J. Catal. 2006. 240. 235-244. https://doi.org/10.1016/j.jcat.2006.04.003

Jacobs J.P., Maltha A., Reitjes J.G.H., Drimal J., Ponec V., Brong-ersma H.H., The surface of catalytically active spinels. J. Catal. 1994. 47. 294-300. https://doi.org/10.1006/jcat.1994.1140

Pyatnytsky Y.I., Strizhak P. E. Calculating Equilibrium and Simulating Kinetics of Heterogeneous Catalytic Reactions. 2018, https://www.free-ebooks.net/ebook/Calculating-Equilibrium-and-Simulating-Kinetics-of-Heterogeneous-Catalytic-Reactions.

Schweitzer N.M., Hu B., Das U., Kim H., Greeley J., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal. 2014. 4. 1091-1092. https://doi.org/10.1021/cs401116p

Elliott D.J., Pennella F. The formation of ketones in the presence of carbon monoxide over CuO/ZnO/Al2O3. J. Catal. 1989. 119. 359-367. https://doi.org/10.1016/0021-9517(89)90166-8

Nishiguchi T., Matsumoto T., Kanai H., Utani K., Marsumura Y., Shen W., Imamura S. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl. Catal. A Gen. 2005. 279. 73-77. https://doi.org/10.1016/j.apcata.2004.10.035