Active centers of redox catalysts
Article PDF (Українська)

Keywords

heterogeneous catalysis
catalysts, active sites
redox processes
catalysis

How to Cite

Kosmambetova, G. (2021). Active centers of redox catalysts. Catalysis and Petrochemistry, (32), 9-31. https://doi.org/10.15407/kataliz2021.32.009

Abstract

The development of representations about the active site structure of solid-phase catalysts, ranging from the work of H. Taylor to a modern understanding of the complex and multi-level structure of catalytic systems, is considered. The main types of active centers of catalysts for redox processes of deep, selective, and preferential conversion are analyzed. It is shown that for each type of reaction, regardless of the chemical nature of the catalyst components, the structure of the active center is characterized by certain common features and determines the direction of conversion. Particular attention is paid to the structure of active sites formed by the type of an isolated active center ("Single Site Isolation"), which allows achieving high selectivity of catalytic processes in the direction of target products obtaining and implementation of new reactions. In particular, the reaction of methane oxidative carbonylation to acetic acid was first carried out in a gas phase using molecular oxygen as an oxidant and catalysts whose active centers were presented by isolated Rh3+ ions in the composition of rhodium selenochloride. A separate type of active center is presented by atoms located on the grain boundaries of crystallites, which arise as a result of interfacing interaction between catalyst components: support, active component, modificator, as well as grain boundaries between homogeneous nanocrystallites in agglomerated systems. It is shown that an important role in the manifestation of catalytic properties plays the availability of an active center for reagents, caused by the spatial structure of catalysts. Zeolites, organometallic compounds (MOF), mesostructural oxides in which active centers are located inside the cavity channels are examples of such catalytic systems. The main strategy of research in the field of advanced catalysts is aimed at developing methods for the synthesis of catalytic materials, which provide formation as the maximum number of active centers, so their availability for reagents and subsequent conversion to target products. Designing such systems is a complex task, based on establishing a correlation between composition, structure, and size characteristics of catalytic materials.

https://doi.org/10.15407/kataliz2021.32.009
Article PDF (Українська)

References

Tailor. H.S. A theory of catalytic surfaces, Proceedings of the Royal Society: A. 1925. 108 (745). 105-111.

Robertson A. J. B. The Early History of Catalysis. Platinum Metals Reviews, 1975. 19(2). 64-69.

Evans M., Polyanyi. M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Transactions of the Faraday Society. 1935. 31. 875-894.

Kobzez N.I., The theory of formation of catalytically active ones on surfaces, Journal of physical chemistry. 1939. 13. 1-26. [In Russian].

Balandin A.A, Еo the theory of heterogeneous catalytic reactions. Model of hydrogenation catalysis. Mendeleev Chemistry Journal (ZhurnalRoss. Khim. Ob-va im. D.I.Mendeleeva). 1929. 61(6). 909-937. [In Russian].

http://www.iupac.org

Krylov O.V. Heterogeneous catalysis, Textbook for universities, Academkniga. Moscow. 2004. 679. [In Russian].

Tada M., Iwasawa Y. Advanced design of catalytically active reaction space at surfaces for selective catalysis. Coordination Chemistry Reviews. 2007. 251. 2702–2716.

Somorjai G.A., McCrea K.R., Zhu J. Active sites in heterogeneous catalysis: development of molecular concepts and future challenges. Topics in Cataysis.. 2002. 18(3-4). p. 57-166.

Astruc D., Transition – metal Nanoparticles in Catalysis, in Nanoparticles and Catalysis. Edited by Didier Astruc,, WILEY-VCH Verlag GmbH & Co.. Weinheim. 2008. 1-48.

Krylov O.V., Kiselev V.F. Adsorption and catalysis on transition metals and their oxides. Chemistry, Moscow. 1981. 286. [In Russian].

Védrine J.C. Heterogeneous Catalysis on Metal Oxides. Catalysts. 2017. 7. 341.

Ivanov D.V., Pinaeva L.G., Sadovskaya E.M., Isupova L.A. The effect of oxygen mobility on the reaction capacity of perovskite composition La1-xSrxMnO3 in the methane oxidation reaction, Kinetics and catalysis. 2011. 52 (13). 410-418. [In Russian].

Alkhazov T.G., Margolis L.Ya., Deep catalytic oxidation of organic substances. Chemistry. Moscow. 1986. [In Russian].

Liu X., Zhang Q., Ning P., Tang T., Hu J., Su W. One-pot synthesis of mesoporous Al2O3-supported Pt-Pd catalysts for toluene combustion. Catalysis Communications. 2018. 115. 26-30.

Reddy B.M., Narsimha K., Rao P.K., Mastikhin V.M. Influence of MoO3 and WO3 on the dispersion and activity of V2O5 in vanadia-silica catalysts, Journal of Catalysis. 1989. 118. 22-30.

Wang M., Wang F., What and where are the active sites of oxide-supported nanostructured metal catalysts?, Chinese. Journal of Catalysis. 2014. 35(4). 453-456.

Liotta L. Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis,B, 2010. 100(3-4). 403-412.

Chukin G.D., The structure of aluminum oxide and catalysts hydropholesseserization. Reaction mechanisms, Printa, Moscow. 2010. 288. [In Russian].

Pakhomov N.A., Scientific basis for the preparation of catalysts: Introduction to theory and practice. Publishing House SB RAS, Novosibirsk. 2011. 262. [In Russian].

Somorjai G.A., Rioux R.M., High technology catalysts towards 100% selectivity: Fabrication,characterization and reaction studies. Catalysis Today. 2005. 100. 201-215.

Somorjai G.A., Park J.Y., Molecular factors of catalytic selectivity, Angewandte. Chemie. Int. Ed. 2008. 47. 9212-9228.

Graselli R. ChemInform Abstract: Site Isolation and Phase Cooperation: Two Important Concepts in Selective Oxidation Catalysis: A Retrospective. Catalysis Today. 2014.45(46). 10-27.

Drake T., Ji P., Lin W. Site Isolation in Metal–Organic Frameworks Enables Novel Transition Metal Catalysis. Accounts of Chemical Research. 2018. 251. 2129–2138.

Thomas J. M., Raja R., Sankar G., Bell R. G, Redox molecular sieve catalysts for the aerobic selective oxidation of hydrocarbons. Studies in Surface Science of Catalysis. 2000. 130. 887-892.

Li Z., Ji S.F., Liu Y.W., Cao X., Tian S.B., Chen, Y. J., Niu Z. Q., Li Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chemical Reviews, 2020. 120. 623-682.

Drake, T., Ji, P., Lin, W., Site isolation in metal–organic frameworks enables novel transition metal catalysis. Accounts of chemical research, 2018, 51(9), 2129-2138.

Pyatnitskii Yu.I. Contemporary methods for the direct catalytic conversion of methane. Theoretical and Experimental Chemistry. 2003. 39(4). 201-18.

Liu L.C., Corma,A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chemical. Reviews. 2018. 118. 4981-5079.

Wang Y., Katagiri M., Otsuka K. Oxidative carbonylation of methane to methyl acetate on arhodium-doped iron phosphate catalyst. Chemical Communications, 1997. 1187-1188.

Yuan Q., Zhang Q., Wang Y. Direct conversion of methane to methyl ace-tate with nitrous oxide and carbon monoxide over heterogeneous catalysts containing both rhodium and iron phosphate. Journal of Catalysis. 2005. 233(1). 221-233.

Kosmambetova G.R., Strizhak P.E., Gritsenko V.I., Volkov S.V., Kharkova L.B., Yanko O.G., Korduban O.M., Methane oxidative carbonyl-ation catalyzed by rhodium chalcogen halides over carbon supports, Journal of Natural Gas Chemistry. 2008. 171. 1-7.

Volkov S.V., Kosmambetova G.R., Kharkova L.B., Shvets O.V., Yanko O.G., Stepanenko I.M., Gritsenko V.I., Strizhak P.E., Catalytic perfomance of rhodium chalcogen halides and rhodium chalcogenides over silica supports in methane oxidative carbonylation Journal of Natural Gas Chemistry. 2009. N4. 399-407.

Baranets S.A., Kosmambetova G.R., Kharkova L.B., Strizhak P.E., Rhodium selenochlorides: synthesis, properties and application in heterogeneous catalysis, in Chemical elements (Fluorine, Rhodium and Rubidium). Nova science publishers. 2018. 95-126, 216.

Pavlenko N.V., Kosmambetova G.R., Gritsenko V.I., Strokhko V.L., Shvets A.V. Oxidative carbonylation of methane in the gas phase on oxide catalysts. Ukrainian Chemical Journal. 2003. 11-12. 27-32.

Zhang J. Q., Zhao Y. F., Chen C., Huang Y. C., Dong C. L., Chen C. J., Liu R. S., Wang C.Y., Yan K., Li Y.D. et al., Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions, Journal of American Chemical Society. 2019. 141. 20118-20126.

Zhao G. F., Yang F, Chen Z. J., Liu Q. F., Ji Y. J., Zhang Y., Niu Z. Q., Mao J. J., Bao X. H., Hu P.J. et al., Metal/oxide interfacial effects on the selective oxidation of primary alcohol. Nature Communications. 2017. 8. 14039.

Gutkin M.Y., Ovid’ko I.A., Defect structures at interfaces in nanocrystalline and polycrystalline films. Materials, Physics and .Mechanics. 2009. 8. 108-148.

Ovid’ko I.A., Pande C.S., Masumura R.A., Grain Boundaries in Nano-materials, in Nanomaterials Handbook, Edited by Yu. Gogotsi,, CRC Press. 2006. 540-561.

Neogy S., Savalia R.T., Tewari R., Srivastava D., Dey G.K. Transmission electron microscopy of nanomaterials. Iindian Journal of Pure and Applied . Physics.. 2006. 44. 119-124.

Gusev A.I. The effects of a nanocrystalline state in compact metals and compounds. Physics-Uspekhi. 1998. 168 (1). 55-83. [In Russian].

Gaowu Q., Pei W., Ma X., Xu X., Ren Y., Sun W., Zuo L. Enhanced Catalytic Activity of Pt Nanomaterials: From Monodisperse Nanoparticles to Self-Organized Nanoparticle-Linked Nanowires. Journal of Physical Chemistry. C. 2010. 114(15). 6909-6913.

Khanfekr A., Arzani K., Nemati A., Hosseini M. Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles. International Journal of Environmental Science & Technology. 2009. 6(1). 105-112.

Kosmambetova G.R., Strizhak P.E., Moroz E.M., Konstantinova T.E., Gural’skii A.V., Kol’ko V.P., Gritsenko V.I., Danilenko I.A., Gorban O.A. Influence of the conditions of manufacture of nanomeric zirconium dioxide, stabilized with yttrium oxide, on its catalytic properties in the oxidation of CO. Theoretical and Experimental Chemistry. 2007 43(2). 102-107.

Kosmambetova, G.R., The Influence of Yttrium Stabilized Zirconia as Support of Copper-Ceria Systems on their Catalytic Properties in the Prox Process. Theoretical and Experimental Chemistry. 2020. 56(5). 346-351.

Ermolov, L.V., Slinkin, A.A., Strong metal-carrier interaction and its role in catalysis. Russian Chemical Reviews. 1991. 60(4). 331-357.

Hemmingson S.L., Campbell C.T., Trends in adhesion energies of metal nanoparticles on oxide surfaces: understanding support effects in catalysis and nanotechnology. ACS Nan. 2017. 1196–120311.

Pan C.-Jtsai., M.-C., Su W.-N., Rick J., Akalework N.G., Agegnehu A.K., Cheng S.-Yi, Hwang B.-J. Tuning exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis). Journal of the Taiwan Institute of Chemical Engineers. 2017. 74. 154-186.

Chen M.S.,. Goodman D.W. Structure-activity relationships in supported Au catalysts. Catalysis Today. 2006. 111. 22-33.

Schubert M.M, Hackenberg S., van Veen A.C., Muhler M., Plzak V., Behm R.J., CO Oxidation over Supported Gold Catalysts-“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction. Journal of Catalysis. 2001. 197(1). 113-122.

Wu Yi Y., Mashayekhi N. A., Kung H. H. Au–metal oxide support interface as catalytic active sites. Catalysis Science & Technolog. 2013. 3(11). 2881-2892.

Green I. X., Tang W., Neurock M.,. Yates J.T. Insights into Catalytic Oxidation at the Au/TiO2 Dual Perimeter Sites. Accounts of Chemical Research. 2014. 47(3). 805-815.

Akita T., Maeda Y., Kohyama M., Low-temperature CO oxidation properties and TEM/STEM observation of Au/γ-Fe2O3 catalysts. Journal of Catalysis. 2015. 324. 127-132.

Kаhler K., Holz M.C., Rohe M., van Veen A. C., Muhler M., Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts. Journal of Catalysis. 2013. 299. 162-170.

Yang X., Tian P.-F., Zhangb C., Deng Ya-q., Xu J., Gong J., Han Yi-F., Au/carbon as Fenton-like catalysts for the oxidative degradation of bisphenol. Applied Catalysis B. 2013. 134-135, 145-152.

Zitouni H., Mehdaoui A.,. Spiesser A, Driss Khodja K., Josien L, Le V., Pirri T. C., Structural examination of the interface between Au catalysts and Ge(111). Acta Materialia . 2015. 90. 310-317.

Kane M.D., Roberts F.S., Anderson S.L., Mass-selected supported cluster catalysts: Size effects on CO oxidation activity, electronic structure, and thermal stability of Pdn/alumina (n ≤ 30) model catalysts. International journal of mass spectrometry. 2014, 370. 1-15.

Cargnello M., Doan-Nguyen V V.T., Gordon T.R. et al., Control of Metal Nanocrystal Size Reveals Metal-Support Interface. Role for Ceria Catalysts, Science, 2013. 341. 771-773.

Nienhaus H., Gergen B., Weinberg W. H., McFarland E.W., Detection of chemically induced hot charge carriers with ultrathin metal film Schottky contacts. Surface. Scienc. 2002. 514(1-3). 172-181.

Bera P., Hedge M.S., Mitra S., Hegde M.S., Promoting effect of CeO2 in a Cu/CeO2 catalyst: lowering of redox potentials of Cu species in the CeO2 matrix. Chemical Communications. 2001. 10. 927-928.

Hočevar S., Krašovec U.O., Orel B., Aricó A.S., Kim H., CWO of phenol on two differently prepared CuO-CeO2 catalysts. Applied Catalysis, B. 2000. 28(2). 113-125.

López A.B., Castelló D.L., Anderson J.A. Nox storage and reduction over copper-based catalysts. Part 1: BaO + CeO2 supports. Applied catalysis. B, 2016. 198. 189-199.

Ko E.-Y., Park E.D., Seo K.W., Lee H.C., Lee D., Kim S., A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catalysis Today. 2006. 116(3). 377-383.

Zhang R., Miller J.T., Baertsch C.D. Identifying the active redox oxygen sites in a mixed Cu and Ce oxide catalyst by in situ X-ray absorption spec-troscopy and anaerobic reactions with CO in concentrated H2. Journal of Catalysis. 2012. 294(1). 69-78.

Gamarra D., Belver C., Fernández-García M., Martínez-Arias A. Selective CO Oxidation in Excess H2 over Copper-Ceria Catalysts: Identification of Active Entities/Species. Journal of. American Chemical Society. 2007. 129(40). 12064-12065.

Kosmambetova, G.R. Structural organization of nanophase catalysts for preferential CO oxidation. Theoretical and Experimental Chemistry. 2014. 50(5). 265-281.

Kosmambetova, G.R., Gritsenko, V.I., Strizhak, P.E., Korduban A.M. Effect of the nature of the support for copper-cerium oxide catalysts on selective oxidation of CO in hydrogen-rich mixtures. Theoretical and Experimental Chemistry, 2006. 42(2). 133-138.

Kosmambetova G.R., Moroz E.М., Guralsky A.V., Pakharukova V.P., Boronin A.I., Ivashchenko T.S., Gritsenko V.I., Strizhak P.Е. Low temperature hydrogen purification from CO for fuel cell application over copper-ceria catalysts supported on different oxides. International. Journal of Hydrogen Energy. 2011. 36(1). 1271-1275.

Konstantinova, T.E., Danilenko, I.A., Tokiy, V.V., Glazunova, V.A. Getting Nanopowder of Zirconia from Innovation to Innovation. Science and Innovation, 2005. 1(3). 76-87.

Pakhomov, N.A., Buyanov, R.A., Current trends in the improvement and development of catalyst preparation methods. Kinetics and catalysis, 2005. 46(5). 669-683.

Schwarz J.A., Contescu C., Contescu A., Methods for Preparation of Catalytic Materials, Chemical Reviews, 1995. 95(3). 477-510.

Heiz U., Landman U., Nanocatalysis, Springer, 2007. 376.

Heiz U., Schneider W.D. Nanoassembled model catalysts. Journal of Applied Physics, D. 2000. 33. R85-R102.

Logadottir A., Norskov J.K. The effect of strain for N2 dissociation on Fe surfaces. Surface Science, 2001. 489(1-3). 135-143.

Strongin D.R., Carrazza J., Bare S.R., Somorjai G.A. The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. Journal of Catalysis, 1987. 103(1). 213-215.

Abbet S., Sanchez A., Heiz U., Schneider W.-D., Ferrari A.M., Pacchioni G., Rösch N. Acetylene Cyclotrimerization on Supported Size-Selected Pdn Clusters (1 ≤ n ≤ 30): One Atom Is Enough!. Journal of. American Chemical Society. 2000. 122(14). 3453-3457.

Yang F., Deng D., Pan X., Fu Q., Bao X. Understanding nano effects in catalysis. National Science Review. 2015. 2(2). 183-201.

Strizhak P.E. Nanosize effects in heterogeneous catalysis. Theoretical and experimental Chemistry. 2013. 49(1). 2-21.

Gubin S. P., Moiseev I.I. Chemistry of clusters, Principles of classification and the stucture. 1987, 263.

Budart M., Catalysis by Supported Metals, Advanced Catalysis. 1969. 20. 153-166.

Bond G.C, The origins of particle-size effects in heterogeneous catalysis. Surface Science. 1985. 156. 966-981.

Zhdanov V.P., Kasemo B., Simulations of the reaction kinetics on nanome-ter supported catalyst particles. Surface Science Rep.. 2000. 39. 25-104.

Strizhak P.E., Trypolskyi A.I., Kosmambetova G.R., Didenko O.Z. and Gurnyk, T.N. Geometric and electronic approaches to size effects in heterogeneous catalysis. 2011. Kinetics and Catalysis. 52(1). 128-138.

Narayanan R., El-Sayed M.A. Some Aspects of Colloidal Nanoparticle Stability. Catalytic Activity, and Recycling Potential. Topics in Catalysis. 2008. 47(1). 15-21.

Somorjai G. A., The structure sensitivity and insensitivity of catalytic reactions in light of the adsorbate induced dynamic restructuring of surfaces. Catalysis. Letters. 1990. 7(1-4). 169-182.

Somorjai G.A., Heterogeneous catalysis: future opportunities in a historical perspective. Catalysis Today. 1993. 18. 113-123.

Jacobs P. W., Somorjai G. A. Conversion of heterogeneous catalysis from art to science: the surface science of heterogeneous catalysis. Journal of Molecular Catalysis A. 1985. 131. 5-18.

Fan J., Du H., Zhao Y., Wang, Q., Liu Y., Li D., Feng, J. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. 2020, ACS Catalysis. 10(22). 13560-13583.

Lokteva E.S., Golubina E.V., Metal-support interactions in the design of heterogeneous catalysts for redox processes. 2019. Pure and Applied Chemistry. 91(4). 609-631.

Wolkenstein T., The electronic theory of photocatalytic reactions on semiconductors. In Advances in Catalysis, Academic Press. 1973. 23. 157-208.

Meshkini Far R., Ischenko O.V., Dyachenko A.G., Bieda O., Gaidai S.V., Lisnyak V.V., CO2 hydrogenation into CH4 over Ni-Fe catalysts. Functional Materials Letters. 2018. 11(03). 1850057.

Ischenko O.V., Dyachenko A.G., Saldan I., Lisnyak V.V., Diyuk V.E., Vakaliuk A.V., Yatsymyrskyi, A.V., Gaidai S.V., Zakharova, T.M., Makota O., Ericsson, T. Methanation of CO2 on bulk Co-Fe catalysts. International Journal of Hydrogen Energy. 2021. 46(76). 37860-37871.

Smit B., Maesen T.L.M., Towards a molecular understanding of shape selectivity. Nature. 2008. 451. 671–678.

Yang D., Gates B.C., Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research, ACS Catalysis. 2019. 9(3). 1779-1798.

Wei Y., Parmentier T.E., de Jong K.P., Zečević J., Tailoring and visualizing the pore architecture of hierarchical zeolites. Chemical. Society Reviews. 2015. 44. 7234-7261.

Lin Li-C., Kim J., Kong X., Scott E., McDonald T.M., Long J.R., Understanding CO2 Dynamics in Metal–Organic Frameworks with Open Metal Sites. Angewandte Chemie Int. Ed. 2013. 52. 4410-4413.

Smit B., Maesen T.L.M., Molecular Simulations of Zeolites: Adsorption. Diffusion, and Shape Selectivity, Chemical Reviews. 2008. 108. 4125-4184.

Zhang W., Liu Y., Lu G., Wang Y., Li S., Cui C., Wu J., Xu Z, Tian D., Huang W., DuCheneu J.S., W.D.Wei, Chen H., Yang Y., Huo F., Mesoporous Metal–Organic Frameworks with Size-, Shape-, and Space-Distribution-Controlled Pore Structure. Advanced Materials. 2015. 27(18). 2923-2929.

Marakatti V.S., Halgeri A.B., Shanbhag G.V., Metal ion-exchanged zeolites as solid acid catalysts for the green synthesis of nopol from Prins reaction. Catalysis Science & Technology, 2014. 4. 4065-4074.

Pietron J.J., Stroud R.M., Rolison D.R. Using Three dimensions in catalytic mesoporous nano architectures. Nano Letters, 2002. 2(5). 545-549.

Centi G., Cavani F., Trifiro F., Selective Oxidation By Heterogeneous Catalysis, Shpringer Science+Business media, LLC. 2012. 283.

Čejka J., Centi G., Perez-Parientec J., Roth W.J. Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today. 2012. 179(1). 2-15.

Pan X., Bao X. The Effects of Confinement inside Carbon Nanotubes on Catalysis. Accounts of Chemical Research. 2011. 44(8). 553-562.

Chen W., Fan Z., Pan X., Bao X., Effect of Confinement in Carbon Nano-tubes on the Activity of Fischer−Tropsch Iron Catalyst. Journal of. American Chemical Society. 2008. 130(29). 9414-9419.

Orlyk S.N., Kantserova M.R., Shashkova T.K., Gubareni E.V., Chedryk V.I., Soloviev S.A. Structure and size effects on the catalytic properties of complex metal oxide compositions in the oxidative conversion of methane. Theoretical and Experimental Chemistry. 2013. 49(1). 22-34.

Golodets G.I., Heterogeneous-catalytic reactions involving molecular molecular oxygen, Naukova Dumka, Kiev. 1977. 360.

Alkhazov T. G., Margolis L. Ya. High-selective hydrocarbon oxidation catalysts. Chemistry, Moscow. 1988. 190.

Greeley J.P. Active Site of an Industrial Catalyst. Science. 2012. 336(6083), 810-811.

Chen L., Hou K., Liu Y., Qi Z., Zheng Q., Lu Y., Chen J., Pao C., Wang S., Li Y., Xie S., Liu. F., Predergast D., Klebanoff L., Stavila V., Allendorf M.D., Guo J.,.Zheng L, Somorjai G.A., Efficinet hydrogen Production from Methanol Using a Single-Site Pt1/CeO2 catalyst. Journal of. American Chemical Society. 2019. 141(45), 17995-17999.

Che M., Védrine J.C., Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity; NJ, USA: John Wiley & Sons: Hoboken. 2012. 1181.

Pan Y., X.Shen, Yao L., Bentalib A., Peng Z., Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice. Catalysts. 2018. 8, 478-498.

Ess D., Gagliardi L., Hammes-Schiffer S., Introduction: Computational Design of Catalysts from Molecules to Materials. Chemical Reviews. 2019. 119(11). 6507-6508.

Tretyakov Y.D., Gudilin, E.A., Main directions of fundamental and oriented investigations in the field of nanomaterials. 2009, Successes of Chemistry. 78(9).867-888.

Qi Z., Chen L., Zhang S., Su Ji., Somorjai G.A., Integrating the Fields of Catalysis: Active Site Engineering in Metal Cluster, Metal Organic Framework and Metal Single Site. Topics in Catalysis. 2020. 63. 628-634.