Анотація
CO2 – шкідливий парниковий газ, продукт викидів хімічних виробництв, згоряння викопного палива та автомобільних вихлопів, одночасно є загальнодоступним джерелом карбону. В огляді розглядаються різні шляхи гідрогенізації діоксиду карбону в компоненти моторних палив – метанол, диметиловий етер, етанол, вуглеводні – в присутності гетерогенних каталізаторів. На кожному маршруті перетворення CO2 (в оксигенати або вуглеводні) першою стадією є утворення СО за оберненою реакцією водяного газу, що необхідно враховувати при виборі каталізаторів процесу. Аналізується вплив хімічної природи, питомої поверхні, розміру часток і взаємодії між компонентами каталізатора, а також способу його одержання на перебіг процесів перетворення СО2.
Зазначається, що основними активними компонентами перетворення СО2 в метанол є атоми і йони міді, що взаємодіють з оксидними складовими каталізатора. Простежуєтьсяпозитивний вплив на активність традиційного мідь-цинк-алюмінійоксидного каталізатора синтезу метанолу з синтез-газу добавок оксидів інших металів, зокрема тих, що мають сильні основні центри на поверхні. Найактивнішими каталізаторами синтезу диметилового етеру (ДМЕ) з СО2 і Н2 є біфункціональні, що, поряд з каталізатором синтезу метанолу, містять дегідратуючий компонент, наприклад, мезопористі цеоліти з кислотними центрами слабкої та середньої сили, рівномірно розподіленими на поверхні.
Синтез вуглеводнів бензинового ряду (≥ С5) здійснюється на поліфункціональних каталізаторах, що також містять цеоліти, через утворення СО або СН3ОН і ДМЕ як проміжних продуктів. Гідрогенізація СО2 в етанол може розглядатися як альтернатива синтезу етанолу через гідратацію етилену, основними проблемами залишаються жорсткі умови синтезу, висока енергія активації діоксиду вуглецю, а також висока селективність за вуглеводнями, зокрема, за метаном.
Подальше підвищення селективності і ефективності процесів гідрогенізації діоксиду вуглецю передбачає використання нанорозмірних каталізаторів з урахуванням механізму реакцій перетворення СО2, розробку способів вилучення із зони реакції надлишкової води як бічного продукту та підвищення стабільності каталізаторів у часі.
Посилання
Centi G., Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today. 2009. V.148. pp. 191-205.
https://doi.org/10.1016/j.cattod.2009.07.075
Leonzio G. State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. Journal of CO₂ Utilization. 2018. № 27. pp. 326-354.
https://doi.org/10.1016/j.jcou.2018.08.005
Olajire A.A. Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes. Journal of CO₂ Utilization. 2018. № 24. pp. 522-547.
https://doi.org/10.1016/j.jcou.2018.02.012
Zhludenko M., Dyachenko A., Bieda O., Gaidai S., Filonenko M., Ischenko O. Structure and Catalytic Properties of Co-Fe Systems in the Reaction of CO2 Methanation. Acta Physica Polonica A. 2018. 133 (4). pp. 1084-1087.
https://doi.org/10.12693/APhysPolA.133.1084
Schakel W., Oreggioni G., Singh B., Strømman A, Ramírez A. Assessing the techno-environmental performance of CO2 utilization via dry reforming of methane for the production of dimethyl ether. Journal of CO₂ Utilization. 2016. V. 16. pp. 138-149.
https://doi.org/10.1016/j.jcou.2016.06.005
Yoshihara J., Campbell CT. Methanol Synthesis and Reverse Water Gas Shift Kinetics over Cu (110). Model Catalysts Structural Sensitivity. Journal of Catalysis. 1996. V.161. pp. 776-782.
https://doi.org/10.1006/jcat.1996.0240
Wei J., Ge Q., Yao R. Wen Z., Fang C., Guo L., Xu H., Sun J. Directly converting CO2 into a gasoline fuel. Nature Communications. 2017. V. 8. pp. 1-8.
https://doi.org/10.1038/ncomms16170
Zhang L., Wang H., Yang C., Li X, Sun J., Wang H., Gao P., Sun Y. The rare earth elements modified FeK/Al2O3 catalysts for direct CO2 hydrogenation to liquid hydrocarbons. Catalysis Today. 2019.
https://doi.org/10.1016/j.cattod.2019.11.006
Yang, H., Zhang, C., Gao, P., Wang, H., Li, X., Zhong, L., Weiab W., Sun, Y.. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology. 2017. 7(20). 4580-4598.
https://doi.org/10.1039/C7CY01403A
Meshkini Far R., Ishchenko O.V., Dyachenko A.G., Bieda O., Gaidai S., Lisnyak V. CO2 hydrogenation into CH4 over Ni-Fe catalysts. Functional Materials Letters. 2018. 11(3). 1850057. 1-6.
https://doi.org/10.1142/S1793604718500571
Meiri N., Radus R., Herskowitz M. Simulation of novel process of CO2 conversion to liquid fuels. Journal of CO₂ Utilization. 2017. V.17. pp. 284-289.
https://doi.org/10.1016/j.jcou.2016.12.008
Kondratenko E.V., Mul G., Baltrusaitis J. Larrazábal, G. O. Pérez-Ramírez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & environmental science. 2013. V.6. pp. 3112-3135.
https://doi.org/10.1039/c3ee41272e
Behrens M., Studt F., Kasatkin I., Kühl S., Hävecker M., Abild-Pedersen F., Zander S., Girgsdies F., Kurr P., Kniep BL., Tovar M., Fischer RW., Nørskov JK., Schlögl R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science. 2012. V. 336. pp. 893-897.
https://doi.org/10.1126/science.1219831
Berg, R., Prieto G., Korpershoek G., Wal L.I., Bunningen A.J., Lægsgaard-Jørgensen S., Jongh P.E., Jong K.P. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nature Communication, 2016, V. 7, id. 13057.
https://doi.org/10.1038/ncomms13057
Kattel S., Ramírez P.J., Chen J.G., Rodriguez J.A., Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 2017. V. 355 (6331). pp.1296-1299.
https://doi.org/10.1126/science.aal3573
Tisseraud C., Comminges C., Pronier S., Pouilloux Y., Valant A.L. The Cu-ZnO synergy in methanol synthesis. Part 3: Impact of the composition of a selective Cu@ZnOx core-shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. Journal of Catalysis. 2016. V. 343. pp. 106-114.
https://doi.org/10.1016/j.jcat.2015.12.005
Khimach N.Yu., Polunkin Ye.V., Melʹnykova S.L., Kolomys O.F. Mekhanokhimichna modyfikatsiya midʹ-tsynk-alyumooksydnoho katalizatora syntezu metanolu. Voprosy khymyy y khymycheskoy tekhnolohyy. 2016. P. 78-82 [In Ukrainian].
Wang Y., Kattel S., Gao W., Li K, Liu P., Chen J.G., Wang H. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature Communications. 2019. V.10, id. 1166.
https://doi.org/10.1038/s41467-019-09072-6
Khimach N. Obtaining of methanol by conversion of synthesis gas under mechanochemical activation of catalyst.- Qualifying scientific work as a manuscript. Thesis for a candidate's degree (PhD) in chemical science on speciality 02.00.13 "Petrochemistry and coal chemistry". - V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, 2017 [in Ukrainian].
Khimach N.Yu., Polunkin Ye.V., Filonenko M.M., Melʹnykova S.L. Aktyvatsiya katalizatora syntezu metanolu shlyakhom mekhanichnoyi diyi. Dopovidi Akademii Nauk. 2016. № 3. P.86-92. [In Ukrainian]
https://doi.org/10.15407/dopovidi2016.03.086
Huang C., Wen J., Sun Yu. Zhang M, Bao Yu., Zhang Yu, Liang L., Fua M., Wu Ju., Ye D., Chen L. CO2 Hydrogenation to Methanol over Cu/ZnO Plate Model Catalyst: Effects of Reducing Gas Induced Cu Nanoparticle Morphology. Chemical Engineering Journal. 2019. V. 374. pp. 221-230.
https://doi.org/10.1016/j.cej.2019.05.123
Duan Н., Li Y., Lv, X., Chen, D., Long, M., Wen, L. CuO-ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis - The role of ZnO. Journal of Materials Research. 2018. V. 33. № 11. pp. 1625-1631.
https://doi.org/10.1557/jmr.2018.140
Ayodele O.B. Eliminating reverse water gas shift reaction in CO2 hydrogenation to primary oxygenates over MFI-type zeolite supported Cu/ZnO nanocatalysts. Journal of CO2 Utilization. 2017. V.20, pp. 368-377.
https://doi.org/10.1016/j.jcou.2017.06.015
Li C., Yuan X., Fujimo K. Development of highly stable catalyst for methanol synthesis from carbon dioxide. Applied Catalysis A: General. 2014. V. 469. pp. 306-311.
https://doi.org/10.1016/j.apcata.2013.10.010
Jiang Y., Yang H., Gao P., Li X., Zhang J., Liu, H., Wang H., Wei W., Sun, Y. Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts. Journal of CO2 Utilization. 2018. V. 26. pp. 642-651.
https://doi.org/10.1016/j.jcou.2018.06.023
Graciani J., Mudiyanselage K., Xu F., Baber, A. E., Evans, J., Senanayake, S. D., Stacchiola D.J., Liu P., Hrbek J., Sanz J. Rodriguez J.A. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science. 2014. V. 345. pp. 546-550.
https://doi.org/10.1126/science.1253057
Ouyang B., Tan W., Liu B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. Catalysis Communications. 2017. V. 95. pp. 36-39.
https://doi.org/10.1016/j.catcom.2017.03.005
Li S., Guo L., Ishihara T. Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst. Catalysis Today. 2019. V.339, N1. pp. 352-361.
https://doi.org/10.1016/j.cattod.2019.01.015
Tan Q., Shi. Z, Wu D. CO2 Hydrogenation to Methanol over a Highly Active Cu-Ni/CeO2-Nanotube Catalyst. Industrial and Engineering Chemistry Research. 2018. V. 57(31). pp.10148-10158.
https://doi.org/10.1021/acs.iecr.8b01246
Chen G., Sun S., Sun X., Fan W., You T. Formation of CeO2 nanotubes from Ce(OH)CO3 nanorods through kirkendall diffusion. Inorganic Chemistry. 2009. V. 48. pp. 1334-1338.
https://doi.org/10.1021/ic801714z
Shi Z., Tan Q., Wu D. Ternary copper-cerium-zirconium mixed metal oxide catalyst for direct CO2 hydrogenation to methanol. Materials Chemistry and Physics. 2018.
https://doi.org/10.1016/j.matchemphys.2018.08.038
Rhodes M. D. & Bell A. T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I. Steady-state studies. J. Catal. 2005. V. 233. P. 198-209.
https://doi.org/10.1016/j.jcat.2005.04.026
Rhodes M. D., Pokrovski K. A., Bell A. T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part II. Transient-response infrared studies. Journal of Catalysis. 2005. V. 233. pp. 210-220.
https://doi.org/10.1016/j.jcat.2005.04.027
Tada S., Kayamori S., Honma T. Kamei, H., Nariyuki, A., Kon, K., Takashi T., Ken-ichi S., Shigeo S. Design of Interfacial Sites between Cu and Amorphous ZrO2 Dedicated to CO2-to-Methanol Hydrogenation. ACS Catalysis. 2018. V.8, № 9. pp. 7809-7819.
https://doi.org/10.1021/acscatal.8b01396
T. Witoon, J. Chalorngtham, P. Dumrongbunditkul et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases. Chem. Eng. J. 2016. V. 293. Р. 327-336.
https://doi.org/10.1016/j.cej.2016.02.069
Phongamwong T, Chantaprasertporn U, Witoon T, Numpilai T, Poo-Arporn Y, Limphirat W, Donphai W, Dittanet P, Chareonpanich M, Limtrakul J. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: effect of SiO2 contents. Chemical Engineering Journal. 2017. V. 316. pp. 692-703.
https://doi.org/10.1016/j.cej.2017.02.010
Witoon T., Numpilai T., Phongamwong T., Donphai W., Boonyuen C., Warakulwit C., Chareonpanich M., Limtrakul J. Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chemical Engineering Journal. 2018. V. 334. pp. 1781-1791.
https://doi.org/10.1016/j.cej.2017.11.117
Gao P., Li F., Zhao N., Xiao F., Wei W., Zhong L., Sun Y. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Applied Catalysis A: General. 2013. V. 468. pp. 442-452.
https://doi.org/10.1016/j.apcata.2013.09.026
Zhao F., Fan L., Xu K., Hua D., Zhan G., Zhou S.-F. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol. Journal of CO₂ Utilization. 2019. V. 33. pp. 222-232.
https://doi.org/10.1016/j.jcou.2019.05.021
Kamensky D.S., Yevdokymenko V.A., Tkachenko T.V., Khimach N.Y., Kashkovsky V.I. Hydrogenation of carbon dioxide as an alternative source of hydrocarbons. Kataliz ta naftohimia. 2020. V.29. pp. 52-58.
https://doi.org/10.15407/kataliz2020.29.052
Chen D., Mao D., Xiao J., Guo X., Yu J. CO2 hydrogenation to methanol over CuO-ZnO-TiO2-ZrO2: a comparison of catalysts prepared by sol-gel, solid-state reaction and solution-combustion. Journal of Sol-Gel Science and Technology. 2018. V.86, № 3. pp. 719-730.
https://doi.org/10.1007/s10971-018-4680-4
Xiao J., Mao D., Wang G. CO2 hydrogenation to methanol over CuO-ZnO-TiO-ZrO2 catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents. International Journal of Hydrogen Energy. 2019. V.44, № 29. pp. 14831-14841.
https://doi.org/10.1016/j.ijhydene.2019.04.051
Olah G.A., Goeppert A., Prakash G.K.S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas torenewable, environmentally carbon neutral fuels and synthetic hydrocarbons. The Journal of Organic Chemistry. 2009. V.74, № 2. pp. 487498.
https://doi.org/10.1021/jo801260f
Meshkini Far R., Dyachenko A., Gaidai S., Bieda O., Filonenko M., Ishchenko O. Catalytic properties of Ni-Fe systems in the reaction of CO2 methanation at atmospheric pressure. Acta Physica Polonica A. 2018. 133 (4). 1088-1090.
https://doi.org/10.12693/APhysPolA.133.1088
Erena J., Sierra I., Aguayo A.T. Ateka A., Olazar M., Bilbao J. Kinetic modelling of dimethyl ether synthesis from (H2 + CO2) by considering catalyst deactivation. Chemical Engineering Journal. 2011. V.174, № 2-3. pp. 660-667.
https://doi.org/10.1016/j.cej.2011.09.067
Jia G., Tan Y, Han Y. A Comparative Study on the Thermodynamics of Dimethyl Ether Synthesis from CO Hydrogenation and CO2 Hydrogenation. Industrial & Engineering Chemistry Research. 2006. V.45, №3, pp. 1152-1159.
https://doi.org/10.1021/ie050499b
Aguayo A.T., Erenа J., Mier D., Arandes J.M., Olazar M., Bilbao J. Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO-ZnO-Al2O3/γ-Al2O3 Catalyst. Industrial & Engineering Chemistry Research. 2007. V.46. pp. 5522-5530.
https://doi.org/10.1021/ie070269s
Suwannapichat Y., Numpilai T., Chanlek N., Faungnawakij K., Chareonpanich M., Limtrakul J., Witoon T. Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a Cu ZnO ZrO2 catalyst admixed with WOx/Al2O3 catalysts: Effects of pore size of Al2O3 support and W loading content. Energy Conversion and Management. 2018. V.159. pp.20-29.
https://doi.org/10.1016/j.enconman.2018.01.016
Ereña J., Garoña R., Arandes J. M., Aguayo A.T., Bilbao J. Direct Synthesis of Dimethyl Ether From (H2+CO) and (H2+CO2) Feeds. Effect of Feed Composition. International Journal of Chemical Reactor Engineering. 2005. 3(1).
https://doi.org/10.2202/1542-6580.1295
Su T., Zhou X., Qin Z., & Ji H. Intrinsic Kinetics of Dimethyl Ether Synthesis from Plasma Activation of CO2 Hydrogenation over Cu-Fe-Ce/HZSM-5. ChemPhysChem. 2016. 18(3). 299-309.
https://doi.org/10.1002/cphc.201601283
Liu R., Qin Z., Ji H., Su T. Synthesis of Dimethyl Ether from CO2 and H2 Using a Cu-Fe-Zr/HZSM-5 Catalyst System. Industrial & Engineering Chemistry Research. 2013. 52(47). 16648-16655.
https://doi.org/10.1021/ie401763g
An X., Zuo Y-Z., Zhang Q., Wang D., Wang J.-F. Dimethyl Ether Synthesis from CO2 Hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 Bifunctional Catalyst. Industrial & Engineering Chemistry Research. 2008. V. 47. pp. 6547-6554.
https://doi.org/10.1021/ie800777t
Ateka A., Sierra I., Ereña J. et al. Performance of CuO-ZnO-ZrO2 and CuO-ZnO-MnO as metallic functions and SAPO-18 as acid function of the catalyst for the synthesis of DME co-feeding CO2. Fuel Process. Technol. 2016. V.152. P. 34-45.
https://doi.org/10.1016/j.fuproc.2016.05.041
Liu R., Tian H., Yang A. Zha F., Ding J., Chang Y. Preparation of HZSM-5 membrane рacked CuO-ZnO-Al2O3 nanoparticles for catalyzing carbon dioxide hydrogenation to dimethyl ether. Applied Surface Science. 2015. V. 345. pp. 1-9.
https://doi.org/10.1016/j.apsusc.2015.03.125
Sánchez-Contador M., Ateka A., Aguayo A.T., Bilbao J. Direct synthesis of dimethyl ether from CO and CO2 over a core-shell structured CuO-ZnO-ZrO2@SAPO-11 catalyst. Fuel Processing Technology. 2018. V.179. pp. 258-268.
https://doi.org/10.1016/j.fuproc.2018.07.009
Yang G., Tsubaki N., Shamoto J., Yoneyama Y., Zhang Y. Confinement Effect and Synergistic Function of H-ZSM-5/Cu-ZnO-Al2O3Capsule Catalyst for One-Step Controlled Synthesis. Journal of the American Chemical Society. 2010. 132(23). 8129-8136.
https://doi.org/10.1021/ja101882a
Frusteri F., Bonura G., Cannilla C., Drago Ferrante G., Aloise A., Catizzone E., Migliori M., Giordano G. Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Applied Catalysis B: Environmental. 2015. 176-177, 522-531.
https://doi.org/10.1016/j.apcatb.2015.04.032
García-Trenco A., Vidal-Moya A., Martínez A. Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction. Catalysis Today. 2012. 179. 43-51.
https://doi.org/10.1016/j.cattod.2011.06.034
Frusteri F., Migliori M., Cannilla C., Frusteri L., Catizzone E., Aloise A., Giordano G., Bonura G. Direct CO2-to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. Journal of CO2 Utilization. 2017. 18. 353-361.
https://doi.org/10.1016/j.jcou.2017.01.030
Catizzone E., Bonura G., Migliori M., Braccio G, Frusteri F., Giordano G. The Effect of Zeolite Features on Catalytic Performances of CuZnZr/Zeolite Hybrid Catalysts in One-pot CO2-to-DME Hydrogenation. TECNICA ITALIANA-Italian Journal of Engineering Science. 2019.V.63, No. 2-4. pp. 257-262
https://doi.org/10.18280/ti-ijes.632-420
Catizzone E., Bonura G., Migliori M., Frusteri F., Giordano G.CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules. 2018. 23. 31
https://doi.org/10.3390/molecules23010031
Bahruji H., Esquius J.R, Bowker M., Hutchings G., Armstrong R.D., Jones W. Solvent Free Synthesis of PdZn/TiO2. Catalysts for the Hydrogenation of CO2 to Methanol. Topics in Catalysis. 2018. 61 (3). 144-153.
https://doi.org/10.1007/s11244-018-0885-6
Bahruji H., Armstrong R.D., Ruiz Esquius J., Jones W., Bowker M., Hutchings G.J. Hydrogenation of CO2 to Dimethyl Ether over Brønsted Acidic PdZn Catalysts. Industrial & Engineering Chemistry Research. 2018. 57(20). 6821-6829.
https://doi.org/10.1021/acs.iecr.8b00230
Bonura G., Cannilla C., Frusteri L., Mezzapica A., Frusteri F. DME production by CO2 hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts. Catalysis Today. 2016. 281. рр. 337-344.
https://doi.org/10.1016/j.cattod.2016.05.057
Bonura G., Cordaro M., Cannilla C., Mezzapica A., Spadaro L., Arena F., Frusteri F. Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation. Catalysis Today. 2013. 228. 51-57.
https://doi.org/10.1016/j.cattod.2013.11.017
Sánchez-Contador M., Ateka A., Ibáñez M., Bilbao J., & Aguayo A. T. Influence of the operating conditions on the behavior and deactivation of a CuO ZnO ZrO2@SAPO-11 core-shell-like catalyst in the direct synthesis of DME. Renewable Energy. 2019.
https://doi.org/10.1016/j.renene.2019.01.093
Zhang Y., Fu D., Liu X., Zhang Z., Zhang C., Shi B., Xu J., HanY. Operando Spectroscopic Study of Dynamic Structure of Iron Oxide Catalysts during CO2 Hydrogenation. ChemCatChem. 2018. V.10, № 6. pp. 1272-1276.
https://doi.org/10.1002/cctc.201701779
Al-Dossary M., Ismai A., Fierro J., Bouzid H., Al-Sayari S. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Applied Catalysis B: Environmental. 2015. V.165. pp.651-660.
https://doi.org/10.1016/j.apcatb.2014.10.064
Choi Y.H., Jang Y., Park J. et al. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels. Applied Catalysis B: Environmental. 2017. V.202. P. 605-610.
https://doi.org/10.1016/j.apcatb.2016.09.072
Rodemerck U., Holena M., Wagner E., Smejkal Q., Barkschat A., Baerns M. Catalyst Development for CO2 Hydrogenation to Fuels. ChemCatChem. 2013. V.5, pp. 1948-1955.
https://doi.org/10.1002/cctc.201200879
Wei J., Yao R., Ge Q. Wen Z, Ji X., Fang C., Zhang J., Xu H., Sun J. Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts. ACS Catalysis. 2018. V.8. № 11. pp. 9958-9967.
https://doi.org/10.1021/acscatal.8b02267
Bai R., TanY., Han Y. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts. Fuel Processing Technology. 2004. V. 86(3), pp. 293-301.
https://doi.org/10.1016/j.fuproc.2004.05.001
Ni X., Tan Y., Han Y., Tsubaki N.. Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation. Catalysis Communications. 2007. V.8. P.1711-1714.
https://doi.org/10.1016/j.catcom.2007.01.023
Ye R., Ding J., Gong W., Argyle M., Zhong Q., Wang Y., Russell C., Xu Z., Russell A., Li Q., Fan M., Yao Y. CO2 hydrogenation to high-value products via heterogeneous catalysis. NATURE COMMUNICATIONS. 2019. 10:5698 (online)
https://doi.org/10.1038/s41467-019-13638-9
Gao P., Li S.G., Bu X., Dang S., Liu Z., Wang H., Zhong L., Qiu M., Yang C., Cai J., Wei W., Sun Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry. 2017 (online).
https://doi.org/10.1038/nchem.2794
Gao P., Dang S., Li S., Bu X., Liu Z., Qiu M., Wei W., Sun Y. et al. Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis. ACS Catalysis. 2017. V.8. pp. 571-578.
https://doi.org/10.1021/acscatal.7b02649
Gao J., Jia C., Liu B. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts. Catalysis Science and Technology. 2017. V.7. pp. 5602-5607.
https://doi.org/10.1039/C7CY01549F
Kusama H., Okabe K., Sayama K., Arakawa H. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts. Catalysis Today. 1996. V.28, pp. 261-266.
https://doi.org/10.1016/0920-5861(95)00246-4
Kusama H., Okabe K., Sayama K., Arakawa H. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts. Energy. 1997. V.22. pp. 343-348.
https://doi.org/10.1016/S0360-5442(96)00095-3
Wang G., Luo R., Yang C., Song J., Xiong C., Tian H., Zhao Z., Mu R., Gong J. Active sites in CO2 hydrogenation over confined VOx-Rh catalysts. SCIENCE CHINA Chemistry. 2019. 62 (online).
https://doi.org/10.1007/s11426-019-9590-6
Inui T., Yamamoto T. Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts. Catalysis Today. 1998. V.45. pp. 209-214.
https://doi.org/10.1016/S0920-5861(98)00217-X
Zheng J., An K., Wang J. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst. Journal of Fuel Chemistry and Technology. 2019. V. 47, № 6. pp. 697-708.
https://doi.org/10.1016/S1872-5813(19)30031-3
Zhang S., Liu X., Shao Z., Wang H., Sun Y. Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: Studies on support effects and mechanism. Journal of Catalysis. 2020. V.382. pp. 86-96.
https://doi.org/10.1016/j.jcat.2019.11.038
Wang L., Wang L., Liu X, Wang H., Zhang W., Yang Q., Ma J., Dong X., Yoo S., Kim J., Meng X., Xiao F. Selective Hydrogenation of CO2 to Ethanol over Cobalt Catalysts. Angewandte Chemie International Edition. 2018. V. 57. pp. 6104-6108.
https://doi.org/10.1002/anie.201800729
Wang L., Shenxian H., Wang L., Lei Y., Meng X., Xiao F.-S. Cobalt-nickel catalysts for selective hydrogenation of carbon dioxide into ethanol. 2019. ACS Catalysis.
https://doi.org/10.1021/acscatal.9b04187
Chen Y., Choi S., Thompson L.T. Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts. Journal of Catalysis. 2016. V. 343. pp. 147-156.
https://doi.org/10.1016/j.jcat.2016.01.016
Wang D., Bi Q., Yin G., Zhao W., Huang F., Xie X., Jiang M. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts. Chemical Communications. 2016. 52(99). 14226-14229.
https://doi.org/10.1039/C6CC08161D
Bai S., Shao Q., Wang P. Dai Q, Wang X., Huang X. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles. Journal of the American Chemical Society. 2017. V. 139. pp. 6827-6830.
https://doi.org/10.1021/jacs.7b03101
He Z., Qian Q., Ma J., Meng Q., Zhou H., Song J., Liu Z., Han B. Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angewandte Chemie International Edition. 2016. V. 55. pp. 737-741.