Анотація
Були досліджені VPМеO-каталізатори (де Me=Fe, Mo, Te, W, Ni, Ti, La, Bi, Zr і Ag іони з Ме/V=0,05-0,40) окиснення н-пентану. Головними продуктами реакції на даних каталітичних зразках є фталевий (ФА), малеїновий (МА) і цитраконовий (ЦА) ангідриди, а також оксиди вуглецю й в незначних кількостях оцтова і акрилова кислоти. Встановлено, що зміна фізико-хімічних властивостей VPМеO-каталізаторів впливає на перебіг реакції окиснення н-пентану. Визначено, що уведення домішок та їхній вміст у базовій VPО композиції впливає на фазовий склад, морфологію, кислотні властивості поверхні каталізатора, температуру кристалізації активного компонента та ступінь окиснення ванадію в ньому. Встановлено, що домішки в базовому VPO зразку можуть бути розподілені двома способами: а) рівномірно, високодисперсно (Fe, Te, Ni, Ag іони), б) з утворенням рентгеноаморфної фази фосфату домішки (Ti, Bi, La, W, Zr іони). Домішки, які знижують температуру утворення активної фази каталізатора і підвищують температуру її окиснення (Fe, Ti, Bi, Zr іони), позитивно впливають на строк експлуатації каталітичного зразка без втрати його селективності в окисненні н-пентану. Домішки, які знижують енергію зв’язку O 1s-лектронів і збільшують вміст кисню (O/(V+P+Me)) на поверхні VPО-композиції, підвищують питому швидкість окиснення вуглеводню. Зростання вмісту фосфору на поверхні синтезованих композицій також збільшує час їхньої стабільної роботи. Встановлений вплив співвідношення кислотних центрів Бренстеда і Льюїса на поверхні VPMeO-зразків на селективність утворення ангідридів. Зростання вмісту кислотних центрів на поверхні зразків підвищує селективність утворення ЦА. Збільшення кількості кислотних центрів Льюїса сприяє утворенню ФА, тоді як селективність за МА знижується у продуктах реакції. Згідно з одержаними експериментальними даними модифікування VPO-каталізатора впливає на його фізико-хімічні і каталітичні властивості. Зміна певних фізико-хімічних властивостей каталітичного зразка дає можливість регулювати процес окиснення н-пентану в бік утворення того чи іншого з ангідридів.
Посилання
Centi G., Trifiro F., Ebner J., Franchetti V.M. Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide. Chemical Reviews. 1988. V.88 (1). 55-80.
https://doi.org/10.1021/cr00083a003
Zazhigalov V.A., López Nieto J., Solsona B., Komashko G.A., Bacherikova I.V., Stoch J. Modification of VPO catalysts for oxidative dehydrogenation of ethane. Theoretical and Experimental Chemistry. 1999. V. 35. 275-279.
https://doi.org/10.1007/BF02511117
Aguero A., Sneeden R.P.A., Volta J.C. Selective oxidation on vanadyl phosphate catalysts: oxidation of liner and branched alkanes. Studies in Surface Science and Catalysis. 1988. V.41. 353-359.
https://doi.org/10.1016/S0167-2991(09)60833-8
Centi G, Trifiro F. Surface kinetics of adsorbed intermediates: selective oxidation of C4-C5 alkanes. Chemical Engineering Science. 1990. V.45 (8). 2589-2596.
https://doi.org/10.1016/0009-2509(90)80146-6
Michalakos P.M., Kung M.C., Jahan I., Kung H.H. Selectivity patterns in alkane oxidation over Mg3(VO4)2MgO, Mg2V2O7, and (VO)2P2O7. Journal of Catalysis. 1993. V.140 (1). 226-242.
https://doi.org/10.1006/jcat.1993.1080
Gribot-Perrin N., Volta J.C., Burrows A., Kiely C., Gubelmann-Bonneau M. On the role of microstructure of vanadium phosphorus oxides for propane oxidation to acrylic acid. Studies in Surface Science and Catalysis. 1996. V.101. 1205-1214.
https://doi.org/10.1016/S0167-2991(96)80332-6
Busca G., Centi G. Surface dynamics of adsorbed species on heterogeneous oxidation catalysts: evidence from the oxidation of C4 and C5 alkanes on vanadyl pyrophosphate. Journal of the American Chemical Society. 1989. V.111 (1). 46-54.
https://doi.org/10.1021/ja00183a008
Gasior M., Gressel I., Zazhigalov V.A., Grzybowska B. Effect of additives to VPO system on its properties in oxidative dehydrogenation of propane and ethane. Polish journal of chemistry. 2003.V.77. 909-915.
Lopez Nieto J.M., Zazhigalov V.A., Solsona B., Bacherikova I.V. Oxidative dehydrogenation of ethane on vanadium-phosphorous oxide catalysts. Studies in Surface Science and Catalysis. 2000. V.130. 1853-1858.
https://doi.org/10.1016/S0167-2991(00)80471-1
Cavani F., Colombo A., Trifiro F. The effect of cobalt and iron dopants on the catalytic behavior of V/P/O catalysts in the selective oxidation of n-pentane to maleic and phthalic anhydrides. Catalysis Letters. 1997. V.43 (3-4). 241-247.
https://doi.org/10.1023/A:1018927714568
Martin A., Bentrup U., Wolf G. The effect of alkali metal promotion on vanadium-containing catalysts in the vapour phase oxidation of methyl aromatics to the corresponding aldehydes. Applied Catalysis. 2002. V.227 (1-2). 131-142.
https://doi.org/10.1016/S0926-860X(01)00930-9
Govender N., Friedrich H.B., van Vuuren M.J. Controlling factors in the selective conversion of n-butane over promoted VPO catalysts at low temperature. Catalysis Today. 2004. V.97 (4). 315-324.
https://doi.org/10.1016/j.cattod.2004.07.005
Taufiq-Yap Y.H., Tan K.P., Waugh K.C., Hussein M.Z., Ramli I., Abdul Rahman M.B. Bismuth-modified vanadyl pyrophosphate catalysts. Catalysis Letters. 2003. V.89 (1-2). 87-93.
https://doi.org/10.1023/A:1024775611157
Thomas L., Tanner R., Gill P., Wells R., Bailie J.E., Kelly G., Jackson S.D., Hutchings G. Aldol condensation reactions of acetone over alkali-modified vanadium phosphate catalysts. Physical Chemistry Chemical Physics. 2002. V.4. 4555-4560.
https://doi.org/10.1039/b204684a
Sajip S., Bartley J.K., Burrows A., Rhodes C., Volta J.C., Kiely C.J., Hutchings G.J. Structural transformation sequence occuring during the activation under n-butane-air of a cobalt-doped vanadium phosphate hemihydrate precursor for mild oxidation to maleic anhydride. Physical Chemistry Chemical Physics. 2001. V.3. 2143-2147.
https://doi.org/10.1039/b102324c
Xu L., Chen X., Ji W., Yan Q., Chen Y. Influence of the way of preparing vanadium phosphorus oxide (VPO) precursor and introducing multi-additives on the reaction performance. Reaction Kinetics and Catalysis Letters. 2002. V.76 (2). 335-341.
https://doi.org/10.1023/A:1016548314430
Datta A., Agarwal M., Dasgupta S., Kelkar R.Y. Novel platinum incorporated vanadium phosphates and their catalytic activity. Journal of Molecular Catalysis. 2003. V.198. 205-214.
https://doi.org/10.1016/S1381-1169(02)00689-1
De Farias A.M.D., Gonzalez W.A., Pries de Oliveira P.G., Eon J.C., Herrmann J.M., Aouine M., Loridant S., Volta J.C. Vanadium phosphorus oxide catalyst modified by niobium doping for mild oxidation of n-butane to maleic anhydride. Journal of Catalysis. 2002. V.208 (1). 238-246.
https://doi.org/10.1006/jcat.2002.3562
Zazhigalov V.A., Haber J., Stoch J., Pyatniskaya A.I., Komashko G.A., Belousov V.M. Properties of cobalt-promoted (VO)2P2O7 in the oxidation of butane. Applied Catalysis. 1993. V.96 (1). 135-150.
https://doi.org/10.1016/0926-860X(90)80006-Z
Zazhigalov V.A., Mikhailyuk V.D., Stoch J., Bacherikova I.V., Golovatyi V.G., Shabel'nikov V.P. Effect of chemical modification of VPO catalysts on their acid-base and catalytic properties in the oxidation of the n-pentane. Theoretical and Experimental Chemistry volume. 1996. V.32 (3). 164-166.
https://doi.org/10.1007/BF01373244
Zazhigalov V.A. Effect of bismuth additives on the properties of vanadium-phosphorous oxide catalyst in the partial oxidation of n-pentane. Kinetics and Catalysis. 2002. V.43 (4). 514-524.
https://doi.org/10.1023/A:1019827002097
Campisi S., Ferri M., Chan-Thaw C.E., Sanchez Trujillo F.J., Motta D., Tabanelli T., Dimitratos N., Villa A. Metal-support cooperative effects in Au/VPO for the aerobic oxidation of benzyl alcohol to benzyl benzoate. Nanomaterials. 2019. V.9 (2). 299-314.
https://doi.org/10.3390/nano9020299
Ayub I., Su D., Willinger M., Kharlamov A., Ushkalov L., Kirillova N., Zazhigalov V.A., Schlogl R. Tribomechanical modification of Bi promoted vanadyl phosphate systems 1: An improved catalyst and insight into structure-function relationship. Physical Chemistry Chemical Physics. 2003, V.5. 970-978.
https://doi.org/10.1039/b210418k
Cheng W.H. Effect of compositions of promoted VPO catalysts on the selective oxidation of n-butane to maleic anhydride. Applied Catalysis. 1996.V.147. 55-67.
https://doi.org/10.1016/S0926-860X(96)00213-X
Aramedia M.A., Borau V., Jimenez C., Marinas M., Marinas A., Porras A., Urbano F. J. Syntesis and characterization of ZrO2 as acid-basic catalysts: reactivity of 2-methyl-3-butyn-2-ol. Journal of Catalysis. 1999. V.183 (2). 240-250.
https://doi.org/10.1006/jcat.1999.2418
Bautista F.M., Campelo J.M., Garcia A., Luna D., Marinas J.M., Romero A.A., Navio J.A., Macias M. Fluoride and sulfate trearment of ALPO4-AL2O3 catalysts. 1. Structure, texture, surface-acidity and catalytic performance in cyclohexene conversion and cumene cracing. Journal of Materials Chemistry. 1994. V.145 (1). 107-125.
https://doi.org/10.1006/jcat.1994.1013
Bordes E., Courtine P., Johnson J.W. On the topotactic dehydration of VOHPO4•0.5 H2O into vanadyl pyrophosphate. Journal of Solid State Chemistry. 1984. V.55 (3). 270-279.
https://doi.org/10.1016/0022-4596(84)90277-9
Corbridge D.E.C., Lowe E.J. The Infrared spectra of inorganic phosphorus compounds. Part II. Some salts of phosphorus oxy-acids. Journal of the Chemical Society. 1954. V.493. 4555-4564.
https://doi.org/10.1039/jr9540004555
Wenig R., Schrader G. Vanadium-phosphorus-oxygen industrial catalysts for n-butane oxidation: chatacterization and kinetic measurements. Industrial and Engineering Chemistry Fundamentals. 1986. V. 25. 612-620.
https://doi.org/10.1021/i100024a023
Mota S., Volta J.C., Vorbeck G., Dalmon J.A. Selective oxidation of n-butane on a VPO catalysts: Improvement of the catalytic performance under fuel-rich conditions by doping. Journal of Catalysis. 2000. V.193 (2). 319-329.
https://doi.org/10.1006/jcat.2000.2903
Doi T., Miyake T. Influence of alcohol solvents on characters of VOHPO4•0.5H2O prepared from V4O9 and ortho-H3PO4. Applied Catalysis. 1997. V.164 (1-2). 141-148.
https://doi.org/10.1016/S0926-860X(97)00164-6
Coulston G.W., Thompson E.A., Harron N. Characterization of VPO catalysts by X-ray photoelectron spectroscopy. Journal of Catalysi. 1996. V.163 (1). 122-129.
https://doi.org/10.1006/jcat.1996.0311
Zazhigalov V.A., Haber J., Stoch J., Bacherikova I.V., Komashko G.A., Pyatniskaya A.I. n-Butane oxidation on V-P-O catalysts. Influence of alkali and alkaline-earth metal ions as additions. Applied Catalysis. 1996. V.134 (2). 225-237.
https://doi.org/10.1016/0926-860X(95)00197-2
Zazhigalov V.A., Haber J., Stoch J., Cheburakova E.V. The mechanism of n-pentane partial oxidation on VPO and VPBiO catalysts. Catalysis Communications. 2001. V.2. 375-378.
https://doi.org/10.1016/S1566-7367(01)00063-2
Cheburakova E.V., Zazhigalov V.A. Reaction mechanism-based design of efficient VPO catalysts for n-C5H12 oxidation into phthalic, maleic, and citraconic anhydrides. Kinetics and catalysis. 2008. V.49 (4). 577-586.
https://doi.org/10.1134/S0023158408040150
Nikolov V., Klissurski D., Anastasov A. Phthalic anhydride from o-xylene catalysis: science and engineering. Catalysis Review - Science and Engineering. 1991. V. 33 (3-4). 319-374.
https://doi.org/10.1080/01614949108020303
Dias C.R., Portela M.F., Bond G.C. Synthesis of phthalic anhydride: catalysts, kinetics, and reaction modelling. Catalysis Review - Science and Engineering. 1997. V.39 (3). 169-207.
https://doi.org/10.1080/01614949709353776
Centi G., Trifiro F., Busca G., Ebner J.R., Gleaves J.T. Selective Oxidation Pathways at the Vanadyl Pyrophosphate Surface in Light Paraffin Conversion. Congress of Catalysis. Kanada. 1988. 1538-1545.
Zazhigalov V.A., Cheburakova Ye.V. Partsial'noye okisleniye n-pentana v prisutstvii VPBiO-katalizatorov. Kataliz i neftekhimiya. 2003. №11. pp. 98-103. [in Russian]