Catalysis and petrochemistry
Theoretical and scientific-technical collection
ISSN 2707-5796 (Online), ISSN 2412-4176 (Print)
Ukrainian|  English

Kataliz ta naftohimia: 2020, Vol.30, 1-18.

https://doi.org/10.15407/kataliz2020.30.001

Catalysts for hydrogenation of CO2 into components of motor fuels


Yu.V. Bilokopytovа1, S.L. Melnykova2, N.Yu. Khimach2



1National Aviation University, 1, Liubomyra Huzara ave, Kyiv, Ukraine 03058
2V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 50, Kharkivske shosse, Kyiv, Ukraine 02160
Е-mail: himyla@gmail.com, shtrihi@gmail.com


ABSTRACT


CO2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO2 conversion processes is analyzed.

It is noted that the main active components of CO2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of DME from CO2 and H2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface.

The synthesis of gasoline hydrocarbons (≥ C5) is carried out through the formation of CO or CH3OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO2 into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems.

Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO2 conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.


KEYWORDS


hydrogenation, carbon dioxide, catalyst, methanol, ethanol, dimethyl ether, hydrocarbons.

REFERENCES


1. Centi G., Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today. 2009. V.148. pp. 191-205.
https://doi.org/10.1016/j.cattod.2009.07.075

2. Leonzio G. State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. Journal of CO₂ Utilization. 2018. № 27. pp. 326-354.
https://doi.org/10.1016/j.jcou.2018.08.005

3. Olajire A.A. Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes. Journal of CO₂ Utilization. 2018. № 24. pp. 522-547.
https://doi.org/10.1016/j.jcou.2018.02.012

4. Zhludenko M., Dyachenko A., Bieda O., Gaidai S., Filonenko M., Ischenko O. Structure and Catalytic Properties of Co-Fe Systems in the Reaction of CO2 Methanation. Acta Physica Polonica A. 2018. 133 (4). pp. 1084-1087.
https://doi.org/10.12693/APhysPolA.133.1084

5. Schakel W., Oreggioni G., Singh B., Strømman A, Ramírez A. Assessing the techno-environmental performance of CO2 utilization via dry reforming of methane for the production of dimethyl ether. Journal of CO₂ Utilization. 2016. V. 16. pp. 138-149.
https://doi.org/10.1016/j.jcou.2016.06.005

6. Yoshihara J., Campbell CT. Methanol Synthesis and Reverse Water Gas Shift Kinetics over Cu (110). Model Catalysts Structural Sensitivity. Journal of Catalysis. 1996. V.161. pp. 776-782.
https://doi.org/10.1006/jcat.1996.0240

7. Wei J., Ge Q., Yao R. Wen Z., Fang C., Guo L., Xu H., Sun J. Directly converting CO2 into a gasoline fuel. Nature Communications. 2017. V. 8. pp. 1-8.
https://doi.org/10.1038/ncomms16170

8. Zhang L., Wang H., Yang C., Li X, Sun J., Wang H., Gao P., Sun Y. The rare earth elements modified FeK/Al2O3 catalysts for direct CO2 hydrogenation to liquid hydrocarbons. Catalysis Today. 2019.
https://doi.org/10.1016/j.cattod.2019.11.006

9. Yang, H., Zhang, C., Gao, P., Wang, H., Li, X., Zhong, L., Weiab W., Sun, Y.. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology. 2017. 7(20). 4580-4598.
https://doi.org/10.1039/C7CY01403A

10. Meshkini Far R., Ishchenko O.V., Dyachenko A.G., Bieda O., Gaidai S., Lisnyak V. CO2 hydrogenation into CH4 over Ni-Fe catalysts. Functional Materials Letters. 2018. 11(3). 1850057. 1-6.
https://doi.org/10.1142/S1793604718500571

11. Meiri N., Radus R., Herskowitz M. Simulation of novel process of CO2 conversion to liquid fuels. Journal of CO₂ Utilization. 2017. V.17. pp. 284-289.
https://doi.org/10.1016/j.jcou.2016.12.008

12. Kondratenko E.V., Mul G., Baltrusaitis J. Larrazábal, G. O. Pérez-Ramírez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & environmental science. 2013. V.6. pp. 3112-3135.
https://doi.org/10.1039/c3ee41272e

13. Behrens M., Studt F., Kasatkin I., Kühl S., Hävecker M., Abild-Pedersen F., Zander S., Girgsdies F., Kurr P., Kniep BL., Tovar M., Fischer RW., Nørskov JK., Schlögl R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science. 2012. V. 336. pp. 893-897.
https://doi.org/10.1126/science.1219831

14. Berg, R., Prieto G., Korpershoek G., Wal L.I., Bunningen A.J., Lægsgaard-Jørgensen S., Jongh P.E., Jong K.P. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nature Communication, 2016, V. 7, id. 13057.
https://doi.org/10.1038/ncomms13057

15. Kattel S., Ramírez P.J., Chen J.G., Rodriguez J.A., Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 2017. V. 355 (6331). pp.1296-1299.
https://doi.org/10.1126/science.aal3573

16. Tisseraud C., Comminges C., Pronier S., Pouilloux Y., Valant A.L. The Cu-ZnO synergy in methanol synthesis. Part 3: Impact of the composition of a selective Cu@ZnOx core-shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. Journal of Catalysis. 2016. V. 343. pp. 106-114.
https://doi.org/10.1016/j.jcat.2015.12.005

17. Khimach N.Yu., Polunkin Ye.V., Melʹnykova S.L., Kolomys O.F. Mekhanokhimichna modyfikatsiya midʹ-tsynk-alyumooksydnoho katalizatora syntezu metanolu. Voprosy khymyy y khymycheskoy tekhnolohyy. 2016. P. 78-82 [In Ukrainian].

18. Wang Y., Kattel S., Gao W., Li K, Liu P., Chen J.G., Wang H. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature Communications. 2019. V.10, id. 1166.
https://doi.org/10.1038/s41467-019-09072-6

19. Khimach N. Obtaining of methanol by conversion of synthesis gas under mechanochemical activation of catalyst.- Qualifying scientific work as a manuscript. Thesis for a candidate's degree (PhD) in chemical science on speciality 02.00.13 "Petrochemistry and coal chemistry". - V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, 2017 [in Ukrainian].

20. Khimach N.Yu., Polunkin Ye.V., Filonenko M.M., Melʹnykova S.L. Aktyvatsiya katalizatora syntezu metanolu shlyakhom mekhanichnoyi diyi. Dopovidi Akademii Nauk. 2016. № 3. P.86-92. [In Ukrainian]
https://doi.org/10.15407/dopovidi2016.03.086

21. Huang C., Wen J., Sun Yu. Zhang M, Bao Yu., Zhang Yu, Liang L., Fua M., Wu Ju., Ye D., Chen L. CO2 Hydrogenation to Methanol over Cu/ZnO Plate Model Catalyst: Effects of Reducing Gas Induced Cu Nanoparticle Morphology. Chemical Engineering Journal. 2019. V. 374. pp. 221-230.
https://doi.org/10.1016/j.cej.2019.05.123

22. Duan Н., Li Y., Lv, X., Chen, D., Long, M., Wen, L. CuO-ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis - The role of ZnO. Journal of Materials Research. 2018. V. 33. № 11. pp. 1625-1631.
https://doi.org/10.1557/jmr.2018.140

23. Ayodele O.B. Eliminating reverse water gas shift reaction in CO2 hydrogenation to primary oxygenates over MFI-type zeolite supported Cu/ZnO nanocatalysts. Journal of CO2 Utilization. 2017. V.20, pp. 368-377.
https://doi.org/10.1016/j.jcou.2017.06.015

24. Li C., Yuan X., Fujimo K. Development of highly stable catalyst for methanol synthesis from carbon dioxide. Applied Catalysis A: General. 2014. V. 469. pp. 306-311.
https://doi.org/10.1016/j.apcata.2013.10.010

25. Jiang Y., Yang H., Gao P., Li X., Zhang J., Liu, H., Wang H., Wei W., Sun, Y. Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts. Journal of CO2 Utilization. 2018. V. 26. pp. 642-651.
https://doi.org/10.1016/j.jcou.2018.06.023

26. Graciani J., Mudiyanselage K., Xu F., Baber, A. E., Evans, J., Senanayake, S. D., Stacchiola D.J., Liu P., Hrbek J., Sanz J. Rodriguez J.A. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science. 2014. V. 345. pp. 546-550.
https://doi.org/10.1126/science.1253057

27. Ouyang B., Tan W., Liu B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. Catalysis Communications. 2017. V. 95. pp. 36-39.
https://doi.org/10.1016/j.catcom.2017.03.005

28. Li S., Guo L., Ishihara T. Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst. Catalysis Today. 2019. V.339, N1. pp. 352-361.
https://doi.org/10.1016/j.cattod.2019.01.015

29. Tan Q., Shi. Z, Wu D. CO2 Hydrogenation to Methanol over a Highly Active Cu-Ni/CeO2-Nanotube Catalyst. Industrial and Engineering Chemistry Research. 2018. V. 57(31). pp.10148-10158.
https://doi.org/10.1021/acs.iecr.8b01246

30. Chen G., Sun S., Sun X., Fan W., You T. Formation of CeO2 nanotubes from Ce(OH)CO3 nanorods through kirkendall diffusion. Inorganic Chemistry. 2009. V. 48. pp. 1334-1338.
https://doi.org/10.1021/ic801714z

31. Shi Z., Tan Q., Wu D. Ternary copper-cerium-zirconium mixed metal oxide catalyst for direct CO2 hydrogenation to methanol. Materials Chemistry and Physics. 2018.
https://doi.org/10.1016/j.matchemphys.2018.08.038

32. Rhodes M. D. & Bell A. T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I. Steady-state studies. J. Catal. 2005. V. 233. P. 198-209.
https://doi.org/10.1016/j.jcat.2005.04.026

33. Rhodes M. D., Pokrovski K. A., Bell A. T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part II. Transient-response infrared studies. Journal of Catalysis. 2005. V. 233. pp. 210-220.
https://doi.org/10.1016/j.jcat.2005.04.027

34. Tada S., Kayamori S., Honma T. Kamei, H., Nariyuki, A., Kon, K., Takashi T., Ken-ichi S., Shigeo S. Design of Interfacial Sites between Cu and Amorphous ZrO2 Dedicated to CO2-to-Methanol Hydrogenation. ACS Catalysis. 2018. V.8, № 9. pp. 7809-7819.
https://doi.org/10.1021/acscatal.8b01396

35. T. Witoon, J. Chalorngtham, P. Dumrongbunditkul et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases. Chem. Eng. J. 2016. V. 293. Р. 327-336.
https://doi.org/10.1016/j.cej.2016.02.069

36. Phongamwong T, Chantaprasertporn U, Witoon T, Numpilai T, Poo-Arporn Y, Limphirat W, Donphai W, Dittanet P, Chareonpanich M, Limtrakul J. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: effect of SiO2 contents. Chemical Engineering Journal. 2017. V. 316. pp. 692-703.
https://doi.org/10.1016/j.cej.2017.02.010

37. Witoon T., Numpilai T., Phongamwong T., Donphai W., Boonyuen C., Warakulwit C., Chareonpanich M., Limtrakul J. Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chemical Engineering Journal. 2018. V. 334. pp. 1781-1791.
https://doi.org/10.1016/j.cej.2017.11.117

38. Gao P., Li F., Zhao N., Xiao F., Wei W., Zhong L., Sun Y. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Applied Catalysis A: General. 2013. V. 468. pp. 442-452.
https://doi.org/10.1016/j.apcata.2013.09.026

39. Zhao F., Fan L., Xu K., Hua D., Zhan G., Zhou S.-F. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol. Journal of CO₂ Utilization. 2019. V. 33. pp. 222-232.
https://doi.org/10.1016/j.jcou.2019.05.021

40. Kamensky D.S., Yevdokymenko V.A., Tkachenko T.V., Khimach N.Y., Kashkovsky V.I. Hydrogenation of carbon dioxide as an alternative source of hydrocarbons. Kataliz ta naftohimia. 2020. V.29. pp. 52-58.
https://doi.org/10.15407/kataliz2020.29.052

41. Chen D., Mao D., Xiao J., Guo X., Yu J. CO2 hydrogenation to methanol over CuO-ZnO-TiO2-ZrO2: a comparison of catalysts prepared by sol-gel, solid-state reaction and solution-combustion. Journal of Sol-Gel Science and Technology. 2018. V.86, № 3. pp. 719-730.
https://doi.org/10.1007/s10971-018-4680-4

42. Xiao J., Mao D., Wang G. CO2 hydrogenation to methanol over CuO-ZnO-TiO-ZrO2 catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents. International Journal of Hydrogen Energy. 2019. V.44, № 29. pp. 14831-14841.
https://doi.org/10.1016/j.ijhydene.2019.04.051

43. Olah G.A., Goeppert A., Prakash G.K.S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas torenewable, environmentally carbon neutral fuels and synthetic hydrocarbons. The Journal of Organic Chemistry. 2009. V.74, № 2. pp. 487498.
https://doi.org/10.1021/jo801260f

44. Meshkini Far R., Dyachenko A., Gaidai S., Bieda O., Filonenko M., Ishchenko O. Catalytic properties of Ni-Fe systems in the reaction of CO2 methanation at atmospheric pressure. Acta Physica Polonica A. 2018. 133 (4). 1088-1090.
https://doi.org/10.12693/APhysPolA.133.1088

45. Erena J., Sierra I., Aguayo A.T. Ateka A., Olazar M., Bilbao J. Kinetic modelling of dimethyl ether synthesis from (H2 + CO2) by considering catalyst deactivation. Chemical Engineering Journal. 2011. V.174, № 2-3. pp. 660-667.
https://doi.org/10.1016/j.cej.2011.09.067

46. Jia G., Tan Y, Han Y. A Comparative Study on the Thermodynamics of Dimethyl Ether Synthesis from CO Hydrogenation and CO2 Hydrogenation. Industrial & Engineering Chemistry Research. 2006. V.45, №3, pp. 1152-1159.
https://doi.org/10.1021/ie050499b

47. Aguayo A.T., Erenа J., Mier D., Arandes J.M., Olazar M., Bilbao J. Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO-ZnO-Al2O3/γ-Al2O3 Catalyst. Industrial & Engineering Chemistry Research. 2007. V.46. pp. 5522-5530.
https://doi.org/10.1021/ie070269s

48. Suwannapichat Y., Numpilai T., Chanlek N., Faungnawakij K., Chareonpanich M., Limtrakul J., Witoon T. Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a Cu ZnO ZrO2 catalyst admixed with WOx/Al2O3 catalysts: Effects of pore size of Al2O3 support and W loading content. Energy Conversion and Management. 2018. V.159. pp.20-29.
https://doi.org/10.1016/j.enconman.2018.01.016

49. Ereña J., Garoña R., Arandes J. M., Aguayo A.T., Bilbao J. Direct Synthesis of Dimethyl Ether From (H2+CO) and (H2+CO2) Feeds. Effect of Feed Composition. International Journal of Chemical Reactor Engineering. 2005. 3(1).
https://doi.org/10.2202/1542-6580.1295

50. Su T., Zhou X., Qin Z., & Ji H. Intrinsic Kinetics of Dimethyl Ether Synthesis from Plasma Activation of CO2 Hydrogenation over Cu-Fe-Ce/HZSM-5. ChemPhysChem. 2016. 18(3). 299-309.
https://doi.org/10.1002/cphc.201601283

51. Liu R., Qin Z., Ji H., Su T. Synthesis of Dimethyl Ether from CO2 and H2 Using a Cu-Fe-Zr/HZSM-5 Catalyst System. Industrial & Engineering Chemistry Research. 2013. 52(47). 16648-16655.
https://doi.org/10.1021/ie401763g

52. An X., Zuo Y-Z., Zhang Q., Wang D., Wang J.-F. Dimethyl Ether Synthesis from CO2 Hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 Bifunctional Catalyst. Industrial & Engineering Chemistry Research. 2008. V. 47. pp. 6547-6554.
https://doi.org/10.1021/ie800777t

53. Ateka A., Sierra I., Ereña J. et al. Performance of CuO-ZnO-ZrO2 and CuO-ZnO-MnO as metallic functions and SAPO-18 as acid function of the catalyst for the synthesis of DME co-feeding CO2. Fuel Process. Technol. 2016. V.152. P. 34-45.
https://doi.org/10.1016/j.fuproc.2016.05.041

54. Liu R., Tian H., Yang A. Zha F., Ding J., Chang Y. Preparation of HZSM-5 membrane рacked CuO-ZnO-Al2O3 nanoparticles for catalyzing carbon dioxide hydrogenation to dimethyl ether. Applied Surface Science. 2015. V. 345. pp. 1-9.
https://doi.org/10.1016/j.apsusc.2015.03.125

55. Sánchez-Contador M., Ateka A., Aguayo A.T., Bilbao J. Direct synthesis of dimethyl ether from CO and CO2 over a core-shell structured CuO-ZnO-ZrO2@SAPO-11 catalyst. Fuel Processing Technology. 2018. V.179. pp. 258-268.
https://doi.org/10.1016/j.fuproc.2018.07.009

56. Yang G., Tsubaki N., Shamoto J., Yoneyama Y., Zhang Y. Confinement Effect and Synergistic Function of H-ZSM-5/Cu-ZnO-Al2O3Capsule Catalyst for One-Step Controlled Synthesis. Journal of the American Chemical Society. 2010. 132(23). 8129-8136.
https://doi.org/10.1021/ja101882a

57. Frusteri F., Bonura G., Cannilla C., Drago Ferrante G., Aloise A., Catizzone E., Migliori M., Giordano G. Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Applied Catalysis B: Environmental. 2015. 176-177, 522-531.
https://doi.org/10.1016/j.apcatb.2015.04.032

58. García-Trenco A., Vidal-Moya A., Martínez A. Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction. Catalysis Today. 2012. 179. 43-51.
https://doi.org/10.1016/j.cattod.2011.06.034

59. Frusteri F., Migliori M., Cannilla C., Frusteri L., Catizzone E., Aloise A., Giordano G., Bonura G. Direct CO2-to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. Journal of CO2 Utilization. 2017. 18. 353-361.
https://doi.org/10.1016/j.jcou.2017.01.030

60. Catizzone E., Bonura G., Migliori M., Braccio G, Frusteri F., Giordano G. The Effect of Zeolite Features on Catalytic Performances of CuZnZr/Zeolite Hybrid Catalysts in One-pot CO2-to-DME Hydrogenation. TECNICA ITALIANA-Italian Journal of Engineering Science. 2019.V.63, No. 2-4. pp. 257-262
https://doi.org/10.18280/ti-ijes.632-420

61. Catizzone E., Bonura G., Migliori M., Frusteri F., Giordano G.CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules. 2018. 23. 31
https://doi.org/10.3390/molecules23010031

62. Bahruji H., Esquius J.R, Bowker M., Hutchings G., Armstrong R.D., Jones W. Solvent Free Synthesis of PdZn/TiO2. Catalysts for the Hydrogenation of CO2 to Methanol. Topics in Catalysis. 2018. 61 (3). 144-153.
https://doi.org/10.1007/s11244-018-0885-6

63. Bahruji H., Armstrong R.D., Ruiz Esquius J., Jones W., Bowker M., Hutchings G.J. Hydrogenation of CO2 to Dimethyl Ether over Brønsted Acidic PdZn Catalysts. Industrial & Engineering Chemistry Research. 2018. 57(20). 6821-6829.
https://doi.org/10.1021/acs.iecr.8b00230

64. Bonura G., Cannilla C., Frusteri L., Mezzapica A., Frusteri F. DME production by CO2 hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts. Catalysis Today. 2016. 281. рр. 337-344.
https://doi.org/10.1016/j.cattod.2016.05.057

65. Bonura G., Cordaro M., Cannilla C., Mezzapica A., Spadaro L., Arena F., Frusteri F. Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation. Catalysis Today. 2013. 228. 51-57.
https://doi.org/10.1016/j.cattod.2013.11.017

66. Sánchez-Contador M., Ateka A., Ibáñez M., Bilbao J., & Aguayo A. T. Influence of the operating conditions on the behavior and deactivation of a CuO ZnO ZrO2@SAPO-11 core-shell-like catalyst in the direct synthesis of DME. Renewable Energy. 2019.
https://doi.org/10.1016/j.renene.2019.01.093

67. Zhang Y., Fu D., Liu X., Zhang Z., Zhang C., Shi B., Xu J., HanY. Operando Spectroscopic Study of Dynamic Structure of Iron Oxide Catalysts during CO2 Hydrogenation. ChemCatChem. 2018. V.10, № 6. pp. 1272-1276.
https://doi.org/10.1002/cctc.201701779

68. Al-Dossary M., Ismai A., Fierro J., Bouzid H., Al-Sayari S. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Applied Catalysis B: Environmental. 2015. V.165. pp.651-660.
https://doi.org/10.1016/j.apcatb.2014.10.064

69. Choi Y.H., Jang Y., Park J. et al. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels. Applied Catalysis B: Environmental. 2017. V.202. P. 605-610.
https://doi.org/10.1016/j.apcatb.2016.09.072

70. Rodemerck U., Holena M., Wagner E., Smejkal Q., Barkschat A., Baerns M. Catalyst Development for CO2 Hydrogenation to Fuels. ChemCatChem. 2013. V.5, pp. 1948-1955.
https://doi.org/10.1002/cctc.201200879

71. Wei J., Yao R., Ge Q. Wen Z, Ji X., Fang C., Zhang J., Xu H., Sun J. Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts. ACS Catalysis. 2018. V.8. № 11. pp. 9958-9967.
https://doi.org/10.1021/acscatal.8b02267

72. Bai R., TanY., Han Y. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts. Fuel Processing Technology. 2004. V. 86(3), pp. 293-301.
https://doi.org/10.1016/j.fuproc.2004.05.001

73. Ni X., Tan Y., Han Y., Tsubaki N.. Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation. Catalysis Communications. 2007. V.8. P.1711-1714.
https://doi.org/10.1016/j.catcom.2007.01.023

74. Ye R., Ding J., Gong W., Argyle M., Zhong Q., Wang Y., Russell C., Xu Z., Russell A., Li Q., Fan M., Yao Y. CO2 hydrogenation to high-value products via heterogeneous catalysis. NATURE COMMUNICATIONS. 2019. 10:5698 (online)
https://doi.org/10.1038/s41467-019-13638-9

75. Gao P., Li S.G., Bu X., Dang S., Liu Z., Wang H., Zhong L., Qiu M., Yang C., Cai J., Wei W., Sun Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry. 2017 (online).
https://doi.org/10.1038/nchem.2794

76. Gao P., Dang S., Li S., Bu X., Liu Z., Qiu M., Wei W., Sun Y. et al. Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis. ACS Catalysis. 2017. V.8. pp. 571-578.
https://doi.org/10.1021/acscatal.7b02649

77. Gao J., Jia C., Liu B. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts. Catalysis Science and Technology. 2017. V.7. pp. 5602-5607.
https://doi.org/10.1039/C7CY01549F

78. Kusama H., Okabe K., Sayama K., Arakawa H. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts. Catalysis Today. 1996. V.28, pp. 261-266.
https://doi.org/10.1016/0920-5861(95)00246-4

79. Kusama H., Okabe K., Sayama K., Arakawa H. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts. Energy. 1997. V.22. pp. 343-348.
https://doi.org/10.1016/S0360-5442(96)00095-3

80. Wang G., Luo R., Yang C., Song J., Xiong C., Tian H., Zhao Z., Mu R., Gong J. Active sites in CO2 hydrogenation over confined VOx-Rh catalysts. SCIENCE CHINA Chemistry. 2019. 62 (online).
https://doi.org/10.1007/s11426-019-9590-6

81. Inui T., Yamamoto T. Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts. Catalysis Today. 1998. V.45. pp. 209-214.
https://doi.org/10.1016/S0920-5861(98)00217-X

82. Zheng J., An K., Wang J. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst. Journal of Fuel Chemistry and Technology. 2019. V. 47, № 6. pp. 697-708.
https://doi.org/10.1016/S1872-5813(19)30031-3

83. Zhang S., Liu X., Shao Z., Wang H., Sun Y. Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: Studies on support effects and mechanism. Journal of Catalysis. 2020. V.382. pp. 86-96.
https://doi.org/10.1016/j.jcat.2019.11.038

84. Wang L., Wang L., Liu X, Wang H., Zhang W., Yang Q., Ma J., Dong X., Yoo S., Kim J., Meng X., Xiao F. Selective Hydrogenation of CO2 to Ethanol over Cobalt Catalysts. Angewandte Chemie International Edition. 2018. V. 57. pp. 6104-6108.
https://doi.org/10.1002/anie.201800729

85. Wang L., Shenxian H., Wang L., Lei Y., Meng X., Xiao F.-S. Cobalt-nickel catalysts for selective hydrogenation of carbon dioxide into ethanol. 2019. ACS Catalysis.
https://doi.org/10.1021/acscatal.9b04187

86. Chen Y., Choi S., Thompson L.T. Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts. Journal of Catalysis. 2016. V. 343. pp. 147-156.
https://doi.org/10.1016/j.jcat.2016.01.016

87. Wang D., Bi Q., Yin G., Zhao W., Huang F., Xie X., Jiang M. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts. Chemical Communications. 2016. 52(99). 14226-14229.
https://doi.org/10.1039/C6CC08161D

88. Bai S., Shao Q., Wang P. Dai Q, Wang X., Huang X. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles. Journal of the American Chemical Society. 2017. V. 139. pp. 6827-6830.
https://doi.org/10.1021/jacs.7b03101

89. He Z., Qian Q., Ma J., Meng Q., Zhou H., Song J., Liu Z., Han B. Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angewandte Chemie International Edition. 2016. V. 55. pp. 737-741.
https://doi.org/10.1002/anie.201507585

Current issue

2020 - Vol.30

Content of the issue

Download article