Oxidative dehydrogenation of propane with the participation of mild oxidants (N2O and СО2) on metal(oxide)-zeolite catalysts
Article PDF (Українська)

Keywords

oxidative dehydrogenation of propane, metal (oxide) zeolite compositions, HZSM-5, MTW, surface acidity

How to Cite

Chedryk, V. I., Boichuk, T. M., Kurmach, M. M., Yaremov, P. S., Kapran, A. Y., & Orlyk, S. M. (2024). Oxidative dehydrogenation of propane with the participation of mild oxidants (N2O and СО2) on metal(oxide)-zeolite catalysts. Catalysis and Petrochemistry, (35), 1-10. https://doi.org/10.15407/kataliz2024.35.001

Abstract

The paper presents the results of the study of textural and acidic characteristics of metal (oxide)-zeolite compositions M-BEA (MTW, MOR, ZSM-5) (М = Ga, Fe, Co, In) and their influence on catalytic properties in the oxidative dehydrogenation of propane to propylene with the participation of CO2 and N2O/ODP-СО2 (N2O). The ODP-N2O process was investigated on indium-, cobalt-, and iron-oxide compositions based on zeolites of structural types BEA, MOR, and ZSM-5 (H-form). The best indices of propylene production were achieved on the sample 10 %Fe2O3/HZSM-5 at the temperature 400 °С: the selectivity of formation and yield of propylene are SС3Н6 = 40 % and YС3Н6 = 21 % at the conversion of С3Н8 – 53 % and N2O – 85 %. In the ODP-СО2 process, among the samples of gallium-containing zeolites of the MTW, BEA, and MOR structure (for the Si/Ga ratio = 15-24), higher indices of selectivity are 70 % and propylene yield – 26 % (at XC3H8 = 37.5 %, 600 °С), were achieved on the Ga5.0MTW catalyst (Si/Ga = 24), which is characterized by a developed mesoporous structure, the largest surface (SBET = 585 m2/g) and the highest concentration of weak, medium and strong acid Lewis sites (according to the FTIR-Py data).

https://doi.org/10.15407/kataliz2024.35.001
Article PDF (Українська)

References

Otroshchenko T., Jiang G., Kondratenko V.A., Rodemerck U., Kondratenko E.V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem. Soc. Rev., 2021, 50(1), 473–527.

Gomez E., Yan B., Kattel S., Chen J.G. Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nat. Rev. Chem., 2019, 3, 638–649.

Gambo Y., Adamu S., Abdulrasheed A.A., Lucky R.A., Ba-Shammakh M.S., Hossain M.M. Catalyst design and tuning for oxidative dehydrogenation of propane - A review. Appl. Catal., A., 2021, 609, 117914.

Hu Z.P., Yang D., Wang Z., Yuan Z.Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chin. J. Catal., 2019, 40, 1233–1254.

Atanga M.A., Rezaei F., Jawad A., Fitch M., Rownaghi A.A. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Appl. Catal., B., 2018, 220, 429–445.

Mukherjee D., Park S.-E., Reddy B.M. CO2 as a soft oxidant for oxidative dehydrogenation reaction: An eco benign process for industry. J. CO2 Util., 2016, 16, 301–312.

Hirunsit P., Shimizu K., Fukuda R., Namuangruk S., Morikawa Y., Ehara M. Cooperative H2 Activation at Ag Cluster/θ-Al2O3(110) Dual Perimeter Sites: A Density Functional Theory Study. J. Phys. Chem., 2014, 118(15), 7996–8006.

Ates A., Hardacre C., Goguet A. Goguet Oxidative dehydrogenation of propane with N2O over Fe-ZSM-5 and Fe-SiO2: influence of the iron species and acid sites. Appl. Catal., A., 2012, 441–442, 30–41.

Kowalska-Kuś J., Held A., Nowińska K. Oxydehydrogenation of ethane and propane over alkaline metal modified Fe-ZSM-5 zeolites. Catal. Lett., 2010, 136(3–4), 199–208.

Sánchez-Galofré O., Segura Y., Pérez-Ramírez J. Deactivation and regeneration of iron-containing MFI zeolites in propane oxidative dehydrogenation by N2O. J. Catal., 2007, 249, 123–133.

Kondratenko E.V., Pérez-Ramı́rez J. Oxidative functionalization of propane over FeMFI zeolites: Effect of reaction variables and catalyst constitution on the mechanism and performance. Appl. Catal., A. 2004, 267(1–2), 181–189.

Sathu N.K., Sazama P., Valtchev V., Bernauer B., Sobalik Z. Oxidative dehydrogenation of propane over Fe-BEA catalysts. Stud. Surf. Sci. Catal., 2008, 174, Part B, 1127–1130.

Bulánek R., Wichterlová B., Novoveská K., Kreibich V. Oxidation of propane with oxygen and/or nitrous oxide over Fe-ZSM-5 with low iron concentrations. Appl. Catal., A., 2004, 264(1), 13–22.

Sazama P., Sathu N.K., Tabor E., Wichterlová B., Sklenák Š., Sobalík Z. Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition. J. Catal., 2013, 299, 188–203.

Pérez-Ramı́rez J., Gallardo-Llamas A. N2O-mediated propane oxidative dehydrogenation over steam-activated iron zeolites. J. Catal., 2004, 223(2), 382–388.

Ansari M.B., Park S.-E. Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ. Sci., 2012, 5, 9419–9437.

Michorczyk P., Ogonowski J., Zenczak K. Activity of chromium oxide deposited on different silica supports in the dehydrogenation of propane with CO2 - A comparative study. J. Mol. Catal. A., 2011, 349, 1–12.

Kocoń M., Michorczyk P., Ogonowski J. Effect of supports on catalytic activity of chromium oxide-based catalysts in the dehydrogenation of propane with CO2. Catal. Lett., 2005, 101, 53–57.

Xu B., Zheng B., Hua W., Yue Y., Gao Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts. J. Catal., 2006, 239(2), 470–477.

Zheng B., Hua W., Yue Y., Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide. J. Catal., 2005, 232, 143.

Chen M., Xu J., Su F.-Z., Liu Y.-M., Cao Y., He H.-Y., Fan K.-N. Dehydrogenation of propane over spinel-type gallia-alumina solid solution catalysts. J. Catal., 2008, 256(2), 293–300.

Kurmach M.M., Konysheva K.M., Yaremov P.S., Shvets O.V., Fetiukhin V.M., Shcherban N.D. Hierarchical zeolites as efficient catalysts for dehydration of substituted indanols. J. Solid State Chem., 2022, 309, 122942.

Kurmach M.M., Yaremov P.S., Tsyrina V.V., Skoryk M.O., Shvets O.V. Effect of template structure and synthesis conditions on the adsorption and acid properties of hierarchical Titanosilicate MTW Zeolites. Theor. Exp. Chem., 2015, 51, 216–223.

Boichuk T.M., Orlik S.N. Effect of the composition and method of preparation of iron-containing and cobalt-containing catalysts on the combined reduction of NO and N2O by hydrocarbons. Theor. Exp. Chem., 2009, 45, 386–391.

Orlik S.N., Mironyuk T.V., Boichuk T.M. Structural functional design of catalysts for conversion of nitrogen(I, II) oxides. Theor. Exp. Chem., 2012, 48, 73–97.

Orlyk S.M., Kantserova M.R., Chedryk V.I., Kyriienko P.I., Balakin D.Yu., Millot Y., Dzwigaj S. Influence of Acid-Base Surface Characteristics of GAxSIBEA Zeolites on their Catalytic Properties in the Process of Oxidative Dehydrogenation of Propane to Propylene with Participation of CO2. Theor. Exp. Chem., 2021, 56, 387–395.

Ren Y., Wang J., Hua W., Yue Y., Gao Z. Ga2O3/HZSM-48 for dehydrogenation of propane: Effect of acidity