Abstract
Glycolide is now considered as a promising monomer for production of biodegradable polyglycolate. Due to its high gas impermeability, mechanical strength and thermal stability, this polymer can be used in oil and gas industry, in medicine as biocompatible implants and surgical suture material, and as an ecological packaging material. Traditionally, glycolide is produced from glycolic acid. First, it is polycondensed into a low-molecular-weight oligomer, which is then depolymerized into a monomer. In this work, the vapor-phase conversion of methyl glycolate over several supported oxides without the use of an inert carrier gas under lowered pressure was studied. Condensation occurs according to the reaction 2С3H6O3 → C4H4O4 + 2CH3OH. First, methyl glycolyl glycolate is formed from two molecules of methyl glycolate, which is further condensed into glycolide. The reaction was carried out at 250-300 °C, a pressure of 25-150 mbar and loads on a catalyst of 7-25 mmol MG/gcat/h at a contact time of less than 1 sec. It was shown that more effective is supported TiO2/SiO2 catalyst, which provides 44 % methyl glycolate conversion with a selectivity towards glycolide of 64 % at 270 °C/25 mbar. Glycolide productivity of this catalyst achives to 4.9 mmol/gcat/h. The main by-products are methanol, methyl glycolyl glycolate, methyl methoxyacetate and methoxymethanol.
References
Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review. Adv. Drug Delivery Rev., 2016, 107, 367–392.
Budak K., Sogut O., Audemir Sezer U. A review on synthesis and biomedical applications of polyglycolic acid. J. Polym. Res., 2020, 27, 208–227.
Yamane K., Sato H., Ichikawa Y., Sunagawa K., Shigaki Y. Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polym. J., 2014, 46, 769–775.
Middleton J.C., Tipton A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000, 21, 2335–2346.
Samantaray P.K., Little A., Haddleton D.M., McNally T., Tan B., Sun Z., Huang W., Ji Y., Wan C. Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem., 2020, 22, 4055–4081.
Jem K.J., Bowen Tan P.E. The development and challenges of poly(lactic acid) and poly(glycolic acid). Adv. Ind. Eng. Polym. Res., 2020, 3(2), 60–70.
Botvin V., Karaseva S., Salikova D., Dusselier M. Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers. Polym. Degrad. Stab., 2021, 183, 109427.
Global polyglycolic acid market is expected to reach at an estimated value of USD 8.75 billion by 2027 // https://www.databridgemarketresearch.com/news/global-polyglycolic-acid-market
Varvarin A.M., Levytska S.I., Mylin A.M., Zinchenko O.Yu., Brei V.V. Vapor-phase oxidation of ethylene glycol methanolic solution in to methyl glycolate over CuO-containing catalysts. Каталіз та нафтохімія, 2023, 33, 59–65.
De Clercq R., Makshina E., Sels B.F., Dusselier M. Catalytic gas-phase cyclization of glycolate esters: a novel route towards glycolide-based bioplastics. ChemCatChem, 2018, 10(24), 5649–5655.
Patent US 10899730 B2. De Clercq R., Dusselier M., Sels B.F. Process for preparing cyclic esters from alpha-hydroxy esters and catalysts used therein. 2021.
Варварін А.М., Левицька С.І., Милін А.М., Брей В.В. Парофазна конверсія метиллактату до лактиду на TiO2/SiO2 каталізаторі за зниженого тиску. Каталіз та нафтохімія, 2020, 30, 38–42.
Патент № 141885, Україна. Брей В.В., Шуцький І.В., Варварін А.М., Левицька С.І., Зінченко О.Ю. Спосіб одержання лактиду із алкіллактатів. 2020.
Варварін А.М., Левицька С.І., Глущук Я.Р., Брей В.В. Парофазний синтез лактиду з етиллактату на TiO2/SiO2-каталiзаторi. Укр. хім. журн., 2019, 85(7), 31–37.
De Clercq R., Dusselier M., Makshina E., Sels B.F. Catalytic gas-phase production of lactide from renewable alkyl lactates. Angew. Chem., 2018, 57(12), 3074–3078.