Abstract
The hydrogenolysis of 10 % methanol-water solutions of sucrose and maltose to propylene glycol on supported copper-containing catalysts in flow reactor was studied. The highest concentration of propylene glycol in the reaction products (0.23 mmol/ml) has been obtained in the hydrogenolysis of sucrose on 23Cu-1Cr2O3/Al2O3 catalyst with its full conversion at 170 °C/4.0 MPa H2 and a load on catalyst of 0.8 mmol С12Н22О11/gcat/h. At that, the catalyst productivity towards propylene glycol consists 0.7 mmol/gcat/h. Hydrogenolysis of maltose in these conditions is characterized by 81 % conversion and low (0.04 mmol/ml) concentration of propylene glycol in the reaction products. The main byproducts of sucrose hydrogenolysis are ethylene glycol, hydroxyacetone, 1,2-butanediol, 1,4-butanediol and sorbitol. Concentration of propylene glycol in the reaction products of sucrose hydrogenolysis on 23Cu-1Cr2O3/Al2O3 does not change significantly (0.23-0.18 mmol/ml) during 18 h of catalyst operation. Сomparison of the productivities of 23Cu-1Cr2O3/Al2O3 catalyst to propylene glycol in hydrogenolysis of 10 % solutions of sucrose (0.7 mmol/gcat/h) and glucose (0.9 mmol/gcat/h) suggests that glucose is more suitable for the production of propylene glycol than studied disaccharides.
References
Sullivan C.J. Propanediols. Ullmann’s Encyclopedia of Industrial Chemistry: Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2005. 452.
Okolie J.A. Insights on production mechanism and industrial applications of renewable propylene glycol. iScience, 2022, 25(9), 104903.
Ruppert A.M., Weinberg K., Palkovits R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed., 2012, 51, 2564–2601.
Hirano Y., Sagata K., Kita Y. Selective transformation of glucose into propylene glycol on Ru/Catalysts combined with ZnO under low hydrogen pressures. Appl. Catal. A, 2015, 502, 1–7.
Шаранда М.Є., Левицька С.І., Прудіус С.В., Милін А.М., Брей В.В. Дослідження гідрогенолізу глюкози на Cu-оксидах. Хімія, фізика та технологія поверхні. 2018, 9(2), 134–144.
Baniamerian H., Høj M., Beier M.J., Jensen A.D. Catalytic conversion of sugars and polysaccharides to glycols: A review. Appl. Catal. B, 2023, 303, 1–22.
https://www.isosugar.org/prices.php
https://businessanalytiq.com/procurementanalytics/index/propylene-glycol-price-index
Zartman W.H., Adkins H. Hydrogenolysis of sugars. J. Am. Chem. Soc., 1933, 55(11), 4559–4563.
Van Ling G., Ruijterman C., Vlugter J.C. Catalytic hydrohenolysis of saccharides: Part I. Qualitative and quantitative methods for the identification and determination of the reaction products. Carbohydr. Res., 1967, 4(5), 380–386.
Saxena U., Dwivedi N., Vidyarthi S.R. Effect of catalyst constituents on (Ni, Mo, and Cu)/kieselguhr-catalyzed sucrose hydrogenolysis. Ind. Eng. Chem. Res., 2005, 44, 1466–1473.
García-Bosch N., Especel C., Guerrero-Ruiz A., Rodríguez-Ramos I. Tracking the paths for the sucrose transformations over bifunctional Ru-POM/AC catalysts. Catal. Today, 2020, 357, 113–121.
Sreekantan S., Balachandran Kirali A.A., Marimuthu B. Catalytic conversion of sucrose to 1,2-propanediol over alumina-supported Ni–Mo bimetallic catalysts. Sustainable Energy Fuels, 2022, 6, 3681–3689.
Горбанюк І.С., Трачевський В.В., Брей В.В. Гідрогеноліз водних розчинів глюкози до пропіленгліколю на мідьвмісних каталізаторах. Теоретична та експериментальна хімія, 2024, 3, 00–00.
Шаранда М.Є., Левицька С.І., Брей В.В. Конверсія сорбіту в пропіленгліколь. Каталіз та нафтохімія, 2015, 24, 18–23.
Marzo M., Gervasini A., Carniti P. Hydrolysis of disaccharides over solid acid catalysts under green conditions. Carbohydr. Res., 2012, 347, 23–31.