Vapour phase Guerbet condensation of ethanol to 1-butanol on CsX zeolite
Article PDF (English)

Ключові слова

ethanol condensation, 1-butanol, acid sites, basic sites, 1-butanol yield, process selectivity

Як цитувати

Patrylak, L. K., Pertko, O. P., Valihura, K. V., & Voloshyna, Y. G. (2023). Vapour phase Guerbet condensation of ethanol to 1-butanol on CsX zeolite. Каталіз та нафтохімія, (34), 50-59. https://doi.org/10.15407/kataliz2023.34.050

Анотація

Перетворення етанолу у цінні хімічні продукти набуває все ширшого застосування. Одним із таких перспективних процесів є конденсація спиртів за Гербе, що дозволяє отримувати 1-бутанол із альтернативної нафтовій відновлювальної сировини. Багатообіцяючими каталізаторами такого перетворення є оксидні системи, що поєднують у своєму складі кислотні та основні центри. У даній роботі оцінено активність у конденсації етанолу до 1-бутанолу цезієвої форми  цеоліту типу Х, одержаної гідротермальним іонним обміном, а також проведено порівняння її ефективності з магній-алюміній-оксидними та цирконій-оксидними каталізаторами. Цілісність цеолітної структури підтверджено методами рентгенофазового та рентгенофлуорисцентного аналізу, а також  ІЧ-спектроскопії. Ступінь обміну натрію на цезій склав 82 %. Знайдено також, що катіони цезію локалізовані лише у іонообмінних позиціях фожазиту – в місцях SIII (великі порожнини) та SI` (содалітові комірки). Встановлено, що цеоліт CsX має близькі до оптимального для даного перетворення співвідношення між кількістю кислотних та основних центрів. Цезійвмісний цеоліт за 350 °С демонструє 35-55 % конверсію етанолу та 20-25 % селективність за 1-бутанолом, що є вищим за показники для цирконієвих зразків, але дещо поступається магній-алюмінієвим каталізаторам. Одержані результати свідчать про перспективність використання цеолітів близької природи у процесі конденсації етанолу до 1-бутанолу.

https://doi.org/10.15407/kataliz2023.34.050
Article PDF (English)

Посилання

Ndaba B., Chiyanzu I., Marx S. n-Butanol derived from biochemical and chemical routes: A review. Biotechnol. Reports, 2015, 8, 1-9.

https://doi.org/10.1016/j.btre.2015.08.001

Rajesh Kumar B., Saravanan S. Use of higher alcohol biofuels in diesel engines: A review. Renew. Sustain. Energy Rev., 2016, 60, 84-115.

https://doi.org/10.1016/j.rser.2016.01.085

Roberto W., Trindade S., Gonçalves R., Santos D. Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. Renew. Sustain. Energy Rev., 2016, 69, 642-651.

https://doi.org/10.1016/j.rser.2016.11.213

Niemisto J., Saavalainen P., Pongracz E., Keiski R.L. Biobutanol as a potential sustainable biofuel - assessment of lignocellulosic and waste-based feedstocks. J. Sustain. Dev. Energy, Water Environ. Syst., 2013, 1, 58-77.

https://doi.org/10.13044/j.sdewes.2013.01.0005

Valihura K.V., Soloviev S.O. Catalysts for vapor phase condensation of С1-С4 alcohols with carbon chain elongation. Catalysis and Petrochemistry, 2020, 29, 32-51.

https://doi.org/10.15407/kataliz2020.29.032

Nanda S., Golemi-Kotra D., McDermott J.C., Dalai A.K., Gökalp I., Kozinski J.A. Fermentative production of butanol: Perspectives on synthetic biology. New Biotechnol., 2017, 37, 210-221.

https://doi.org/10.1016/j.nbt.2017.02.006

Uyttebroek M., Van Hecke W., Vanbroekhoven K. Sustainability metrics of 1-butanol. Catal. Today, 2015, 239, 7-10.

https://doi.org/10.1016/j.cattod.2013.10.094

Zheng J., Tashiro Y., Wang Q., Sonomoto K. Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. J. Biosci. Bioeng., 2015, 119, 1-9.

https://doi.org/10.1016/j.jbiosc.2014.05.023

Gabriëls D., Hernández W.Y., Sels B., Van Der Voort P., Verberckmoes A. Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catal. Sci. Technol., 2015, 5, 3876-3902.

https://doi.org/10.1039/C5CY00359H

Patent US 8779216 B2. Wick A. and Mahnke E.U. Method for producing guerbet alcohols. 2014.

Patent US 20130068457 A1. Thach S., Shong R., Dwarakanath V., Winslow G. Method of manufacture of guerbet alcohols for making surfactants used in petroleum industry operations. 2013.

Patent WO 2013120757 AI. Thach S., Shong R., Dwarakanath V., Winslow G. Alcools de guerbet en tant que substituts de la Vaseline. 2013.

Larina O.V., Valihura K.V., Kyriienko P.I., Vlasenko N.V., Balakin D.Yu., Khalakhan I., Čendak T., Soloviev S.O., Orlyk S.M. Successive vapour phase Guerbet condensation of ethanol and 1-butanol over Mg-Al oxide catalysts in a flow reactor. Appl. Catal. A, Gen., 2019, 588, 117265.

https://doi.org/10.1016/j.apcata.2019.117265

Vlasenko N.V., Kyriienko P.I., Yanushevska O.I., Valihura K.V., Soloviev S.O., Strizhak P.E. The effect of ceria content on the acid-base and catalytic characteristics of ZrO2-CeO2 oxide compositions in the process of ethanol to n-butanol condensation. Catal. Letter, 2020, 150, 234-242.

https://doi.org/10.1007/s10562-019-02937-x

Vlasenko N.V., Kyriienko P.I., Valihura K.V., Yanushevska O.I., Soloviev S.O., Strizhak P.E. Effect of modifying additives on the catalytic properties of zirconia in the process of ethanol conversion to 1-butanol. Theor. Exp. Chem., 2019, 55, 43-49.

https://doi.org/10.1007/s11237-019-09594-6

Riittonen T., Eränen K., Mäki-Arvela P., Mikkola J.-P. Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina. Renew. Energ., 2015, 74, 369-378.

https://doi.org/10.1016/j.renene.2014.08.052

Yang C., Meng Z.Y. Bimolecular condensation of ethanol to 1-Butanol catalyzed by alkali cation zeolites. J. Catal., 1993, 142, 37-44.

https://doi.org/10.1006/jcat.1993.1187

Gotoh K., Nakamura S., Mori T., Morikawa Y. Supported alkali salt catalysts active for the guerbet reaction between methanol and ethanol. Stud. Surf. Sci. Catal., 2007, 130, 2669-2674.

https://doi.org/10.1016/S0167-2991(00)80873-3

Pertko O.P., Voloshyna Yu.G., Kontsevoi A.L., Trachevsky V.V. Ethylbenzene formation and its conversion towards coke in the sidechain methylation of toluene on a basic X zeolite. J. Porous Mat., 2021, 28, 1713-1723.

https://doi.org/10.1007/s10934-021-01119-8

Song L., Lia Zh., Zhang R., Zha o L., Li W. Alkylation of toluene with methanol: The effect of K exchange degree on the direction to ring or side-chain alkylation. Catal. Commun., 2012, 19, 90-95.

https://doi.org/10.1016/j.catcom.2011.12.033

Voloshyna Yu.G., Pertko O.P., Patrylak L.K. Effect of the method of modification of zeolite X on selectivity of catalytic methylation of toluene. Theor. Exp. Chem., 2019, 54(6), 395-400.

https://doi.org/10.1007/s11237-019-09586-6

Norby P., Poshni F.I., Gualtieri A.F., Hanson J.C., Grey C.P. Cation migration in zeolites: an in situ powder diffraction and MAS NMR study of the structure of zeolite Cs(Na)-Y during dehydration. J. Phys. Chem. B, 1998, 102(5), 839-856.

https://doi.org/10.1021/jp9730398

Sanchez-Sanchez M., Vidal-Moya J.A., Blasco T. Nuclear magnetic resonance investigation on the adsorption of pyrrole over alkali-exchanged zeolites X. Stud. Surf. Sci. Catal., 2004, 154, 1769-1776.

https://doi.org/10.1016/S0167-2991(04)80707-9

Jiang J., Lu G., Miao Ch., Wu X., Wu W., Sun Q. Catalytic performance of X molecular sieve modified by alkali metal ions for the side-chain alkylation of toluene with methanol. Microporous Mesoporous Mater., 2013, 167, 213-220.

https://doi.org/10.1016/j.micromeso.2012.09.006

Hunger M., Schenk U., Weitkamp J. Mechanistic studies of the side-chain alkylation of toluene with methanol on basic zeolites Y by multi-nuclear NMR spectroscopy. J. Mol. Catal. A: Chem., 1998, 134, 97-109.

https://doi.org/10.1016/S1381-1169(98)00026-0

http://www.iza-structure.org/databases/

Klika Z., Weiss Z., Mellini M., Drabek M. Water leaching of cesium from selected cesiummineral analogues. Appl. Geochem., 2006, 21, 405-418.

https://doi.org/10.1016/j.apgeochem.2005.11.001

Król M., Kolezynski A., Mozgawa W. Vibrational spectra of zeolite Y as a function of ion exchange. Molecules, 2021, 26(2), 342.

https://doi.org/10.3390/molecules26020342