Abstract
The article is devoted to the review of scientific works on the use of SnO2-containing mixed oxides as catalysts for the conversion of monosaccharides into value-added chemical products. Fossil feedstocks such as oil, coal, and natural gas, once the dominant sources for fuels and petrochemicals, are being gradually replaced by biomass and waste-derived alternatives. In particular, the study highlights the potential of sugar-based biomass as key renewable feedstocks for the synthesis of high-value-added chemicals. A detailed review is provided on catalytic strategies for biomass conversion, with a focus on heterogeneous acid and bifunctional oxide catalysts containing tin ions. These catalysts demonstrate significant promise due to their thermal stability, reusability, and reduced environmental footprint compared to traditional homogeneous acid systems. The article explores the structural, acidic, and redox properties of tin-containing mixed oxides such as ZrO₂–SiO₂–SnO₂, SnO₂/Al₂O₃, ZnO–SnO₂/Al₂O₃, and CeO₂–SnO₂/Al₂O₃, obtained via sol–gel synthesis or impregnation techniques. Special emphasis is placed on the catalytic role of Lewis and Brønsted acid sites formed by Sn⁴⁺ ions in tetrahedral and octahedral coordination. These active sites enable a variety of key biomass-derived transformations, including dihydroxyacetone conversion to methyl lactate, and selective production of levulinic and formic acids, esters of lactic and glycolic acids from fructose and xylose. Experimental results show high selectivity and yields under mild conditions, confirming the industrial potential of such catalysts. For example, superacid ZrO₂–SiO₂–SnO₂ allow complete fructose conversion to levulinic and formic acids with high yields (at 80÷90 mol. %). The SnO2/Al2O3 catalyst (5 wt. % tin dioxide) in a flow regime converts dihydroxyacetone, the simplest monosaccharide, to methyl lactate (selectivity 90 mol. %). ZnO–SnO₂/Al₂O₃ catalyst with basic and acid centers promotes complete transformation of fructose to alkyl lactates (yields of ethyl and methyl lactates 56 % and 70 % respectively), while bifunctional CeO₂–SnO₂/Al₂O₃ catalyst enable direct transformation of xylose (100 % conversion) with yield of methyl lactate and methyl glycolate in 42 % and 24 % respectively. The multifunctional properties of Sn-containing mixed oxide catalysts - combining acidic, basic, and redox sites - open pathways for cascade reactions and integrated biomass valorization.
References
Byrum Z. Fossil Fuels Are in Everything from Plastics to Makeup, but Cleaner Alternatives Are Emerging, 2024. Available online: https://www.wri.org/insights/defossilizing-us-chemical-production#:~:text= From %20crayons%2C%20cosmetics%20and%20carpeting,and%20eye%20irritation%20and%20cancer%20
Hattori H. Solid Acid Catalysts: Roles in Chemical Industries and New Concepts. Top. Catal., 2010, 53, 432-438.
https://doi.org/10.1007/s11244-010-9469-9
Кухар В.П. Біоресурси - потенційна сировина для промислового органічного синтезу. Біотехнологія, 2008, 1(1), 12-27.
Sengupta D., Pike R.W. Chemicals from Biomass. In: Chen WY., Suzuki T., Lackner M. (eds.) Handbook of Climate Change Mitigation and Adaptation. - Springer, New York, NY, 2015.
https://doi.org/10.1007/978-1-4614-6431-0_28-2
Хімічна промисловість. Ukraine Invest. Available online: https://ukraineinvest.gov.ua/industries/chemicals/
Carus M., Raschka A. Renewable carbon is key to a sustainable and future-oriented chemical industry. Nova-Paper#10, 2018-08, 1-10. Available online: https://www.researchgate.net/publication/329790481
Werpy T., Petersen G. Top Value Added Chemicals from Biomass Volume I - Results of Screening for Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, USA. 2004, 1, 1-69. Available online: https://www.nrel.gov/docs/fy04osti/35523.pdf
https://doi.org/10.2172/15008859
Holladay J.E., White J.F., Bozell J.J., Johnson D. Top Value Added Chemicals from Biomass-Volume II, Results of Screening for Potential Candidates from Biorefinery Lignin, U.S. Department of Energy: Washington, DC, USA. 2007, 2, 1-79. Available online: https://www.pnnl.gov/main/publications /external/ technical_reports/PNNL-16983.pdf
https://doi.org/10.2172/921839
Top Value Added Chemicals: The Biobased Economy 12 Years Later. 2017. Available online: https://communities.acs.org/t5/GCI-Nexus-Blog/Top-Value-Added-Chemicals-The-Biobased-Economy-12-Years-Later/ba-p/15759
Hattori H., Ono Y. Solid Acid Catalysis (1st ed.). Jenny Stanford Publishing. 2015, 530 p.
https://doi.org/10.1201/b15665
Catalyst Market. Available online: https://www.precedenceresearch.com/catalyst-market
Tanabe K., Holderich W.F. Industrial application of solid acid-base catalysts. Applied Catalysis A: General, 1999, 181, 399-434.
https://doi.org/10.1016/S0926-860X(98)00397-4
Tanabe K. New solid acids and bases - their catalytic properties.- Elsevier, Amsterdam, 1990, 364 p.
Gupta P., Paul S. Solid acids: Green alternatives for acid catalysis. Catalysis Today, 2014, 236(B, 1), 153-170.
https://doi.org/10.1016/j.cattod.2014.04.010
Holm M.S., Saravanamurugan S., Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science, 2010, 328, 602-605.
https://doi.org/10.1126/science.1183990
Tolborg S., Sadaba I., Osmundsen C.M., Fristrup P., Holm M.S., Taarning E. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars. ChemSusChem, 2015, 8(4), 613-617.
https://doi.org/10.1002/cssc.201403057
Zhang J., Wang L., Wang G., Chen F., Zhu J., Wang Ch., Bian Ch., Pan Sh., Xiao F.-Sh. Hierarchical Sn-Beta zeolite catalyst for the conversion of sugars to alkyl lactates. ACS Sustainable Chemistry and Engineering, 2017, 5(4), 3123-3131.
https://doi.org/10.1021/acssuschemeng.6b02881
Moliner M., Roman-Leshkov Y., Davis M.E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc. Natl. Acad. Sci., 2010, 107, 6164-6168.
https://doi.org/10.1073/pnas.1002358107
Pighin E.; Diez V.K.; Di Cosimo J.I. Synthesis of ethyl lactate from triose sugars on Sn/Al2O3 catalysts. Appl. Catal. A., 2016, 517, 151-160.
https://doi.org/10.1016/j.apcata.2016.03.007
Прудіус С.В., Гес Н.Л., Трачевський В.В., Брей В.В. Синтез та вивчення нового суперкислотного ZrO2-SiO2-SnO2 оксиду. Доповіді НAН України, 2019, 11, 73-80.
https://doi.org/10.15407/dopovidi2019.11.073
Prudius S.V., Hes N.L., Trachevskiy V.V., Khyzhun O.Yu., Brei V.V. Superacid ZrO2-SiO2-SnO2 mixed oxide: synthesis and study. Chemistry and Chemical Technology, 2021, 15(3), 336-342.
https://doi.org/10.23939/chcht15.03.336
Трачевський В.В., Прудіус С.В., Милін А.М. Структурно-функціональна самоорганізація системи ZrO2-SiO2:Sn(IV). Український хімічний журнал, 2021, 87(12), 121-136.
https://doi.org/10.33609/2708-129X.87.12.2021.121-136
Prudius S.V., Hes N.L., Inshina O.I., Khyzhun O.Yu. Synthesis and investigation of ZrO2-SiO2 oxide alloyed with Sn(IV) ions. Materials Science, 2022, 58(1), 80-88.
https://doi.org/10.1007/s11003-022-00634-6
Inshina O.I., Prudius S.V., Brei V.V. Superacid L-sites on the surface of ternary ZrO2-SiO2-Al2O3 and ZrO2-SiO2-SnO2 oxides. Theoretical and Experimental Chemistry, 2022, 58(4), 269-275.
https://doi.org/10.1007/s11237-022-09744-3
Prudius S.V., Hes N.L., Mylin A.M., Brei V.V. Continuous conversion of fructose into methyl lactate over SnO2-ZnO/Al2O3 catalyst. Journal of Chemistry and Technologies, 2021, 29(1), 1-9.
https://doi.org/10.3390/colloids3010016
Prudius S.V., Hes N.L., Brei V.V. Conversion of D-Fructose into Ethyl Lactate Over a Supported SnO2-ZnO/Al2O3. Colloids Interfaces, 2019, 3(16), 1-8.
https://doi.org/10.3390/colloids3010016
Prudius S.V., Hes N.L., Zhuravlov A.Yu., Brei V.V. Oxidation of xylose - methanol mixture into methyl lactate and methyl glycolate over CeO2-SnO2/Al2O3 catalyst. Хімія, фізика та технологія поверхні. 2024, 15(3), 340-348.
https://doi.org/10.15407/hftp15.03.340
Dijkmans J., Dusselier M., Gabriëls D., Houthoofd K., Magusin P.C.M.M., Huang Sh., Pontikes Y., Trekels M., Vantomme A., Giebeler L., Oswald S., Sels B.F. Cooperative Catalysis for Multistep Biomass Conversion with Sn/Al Beta Zeolite. ACS Catal., 2015, 5(2), 928-940.
https://doi.org/10.1021/cs501388e
Batzill M., Diebold U. The surface and materials science of tin oxide. Prog. Surf. Sci., 2005, 79(2-4), 47-154.
https://doi.org/10.1016/j.progsurf.2005.09.002
Manjunathan P., Marakatti V.S., Chandra P., Kulal A.B., Umbarkar Sh.B., Ravishankar R., Shanbhag G.V. Mesoporous tin oxide: An efficient catalyst with versatile applications in acid and oxidation catalysis. Catal. Today., 2018, 309(1), 61-76.
https://doi.org/10.1016/j.cattod.2017.10.009
Bermejo-Deval R., Assary R.S., Nikolla E., Moliner M., Román-Leshkov Y., Hwang S.-J., Palsdottir A., Silverman D., Lobo R.F., Curtiss L.A., Davis M.E. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolite. PNAS, 2012, 109(25), 9727-9732.
https://doi.org/10.1073/pnas.1206708109
Bermejo-Deval R., Gounder R., Davis M.E Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently. ACS Catal., 2012, 2, 2705−2713.
https://doi.org/10.1021/cs300474x
Dai W., Wang Ch., Tang B., Wu G., Guan N., Xie Z., Hunger M., Li L. Lewis Acid Catalysis Confined in Zeolite Cages as a Strategy for Sustainable Heterogeneous Hydration of Epoxides. ACS Catal.,2016, 6(5), 2955-2964.
https://doi.org/10.1021/acscatal.5b02823
Hes N.L., Mylin A.M., Prudius S.V. Catalytic Conversion of Dihydroxyacetone to Methyl Lactate Over SnO2/Al2O3 Catalysts. Theor. Exp. Chem., 2023, 59, 302-306.
https://doi.org/10.1007/s11237-024-09789-6
Прудіус С.В., Вислогузова Н.М., Брей В.В. Конверсія D-фруктози в етиллактат на SnO2-вмісних каталізаторах. Хімія, фізика та технологія поверхні, 2019, 10(1), 67-74.
Патент №128002, Україна. Гес Н.Л., Прудіус С.В., Брей В.В. Спосіб одержання метиллактату з фруктози. 2024.
Hes N.L., Mylin A.M., Prudius S.V. Catalytic production of levulinic and formic acids from fructose over superacid ZrO2-SiO2-SnO2 catalyst. Colloids Interfaces, 2022, 6(1), 4.
https://doi.org/10.3390/colloids6010004
Patent 012606A1, WO. Hottois D., Bruneau A., Bogaert J.-Ch., Coszach Ph. Continuous process for obtaining a lactic ester. 2010.
Industry Insights. 2024. Available online: https://www.grandviewresearch.com/industry-analysis/bio-solvents-market
Pereira C.S.M., Silva V.M.T.M., Rodrigues A.E. Ethyl lactate as a solvent: Properties, applications and production processes - a review. Green Chem., 2011, 13, 2658-2671.
https://doi.org/10.1039/c1gc15523g
Aqar D.Y., Rahmanian N., Mujtaba I.M. Methyl lactate synthesis using batch reactive distillation: Operational challenges and strategy for enhanced performance. Separation and Purification Technology, 2016, 158, 193-203.
https://doi.org/10.1016/j.seppur.2015.12.023
Варварін А.М., Левицька С.І., Милін А.М., Брей В.В. Парофазна конверсія метиллактату до лактиду на TiO2/SiO2 каталізаторі за зниженого тиску. Каталіз та нафтохімія, 2020, 30, 38-42.
Thapa I., Mullen B., Saleem A., Leibig C., Baker R.T., Giorgi J.B. Efficient Green Catalysis for the Conversion of Fructose to Levulinic Acid. Appl. Catal. A., 2017, 539, 70-79.
https://doi.org/10.1016/j.apcata.2017.03.016
Hayes D.J., Fitzpatrick S., Hayes M.H.B., Ross J.R.H. The Biofine Process - Production of Levulinic Acid, Furfural, and Formic Acid from Ligno cellulosic Feed stocks. Industrial Processes and Products: Status Quo and Future Directions, 2006, 1, 139-163.
https://doi.org/10.1002/9783527619849.ch7
Reutemann W., Kieczka H. Formic Acid. Ullmann's Encycl. Ind. Chem., 2000, 1-22.
https://doi.org/10.1002/14356007.a12_013
Fusaro M.B., Chagnault V., Poste D. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases. Carbohydr. Res., 2015, 409, 9-19.
https://doi.org/10.1016/j.carres.2015.03.012
Van Putten R.-J. Experimental and modelling studies on the synthesis of 5-hydroxymethylfurfural from sugar. Green Chemical Reaction Engineering, 2015, 374.
Chen Y., Dong B., Qin W., Xiao D. Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol. Bioresour. Technol., 2010, 101, 7005-7010.
https://doi.org/10.1016/j.biortech.2010.03.132
Martinez-Espin J.S., Tolborg S., Bai Y., Andersen N.N.N., Katerinopoulou A., Hansen L.P., Nielsen U.G., Taarning E. Deactivation and Reductive Regeneration of Sn-Beta for Liquid-Phase Biomass Conversion. ACS Catal., 2024, 14(11), 8203-8219.
https://doi.org/10.1021/acscatal.4c01976
Shi N., Liu Q., Cen H., Ju R., He X., Ma L. Formation of humins during degradation of carbohydrates and furfural derivatives in various solvents. Biomass Convers. Biorefin., 2020, 10, 277-287.