Antioxidant activity of polymeric biocide polyhexamethylene guanidine hydrochloride
Article PDF

Keywords

polyhexamethylene guanidine, polymeric biocide, antioxidant activity, methylene blue, radical chain oxidation, oxygen absorption

How to Cite

KamenievaТ., Tarasyuk, O., Derevianko, K., Aksenovska, O., Shybyryn, O., Metelytsia, L., & Rogalsky, S. (2020). Antioxidant activity of polymeric biocide polyhexamethylene guanidine hydrochloride. Catalysis and Petrochemistry, (30), 73-82. https://doi.org/10.15407/kataliz2020.30.073

Abstract

Cationic polymer polyhexamethylene guanidine hydrochloride (PHMG-Cl) is promising biocide that combines a broad spectrum of antimicrobial activity, moderate toxicity, as well as reasonable cost. It is widely used as an effective disinfectant in cooling systems, swimming pools, and hospitals, personal hygiene products, etc. Recently PHMG-Cl was found to have pronounced anti-inflammatory and wound healing properties and therefore may be used for the treatment of chronic wounds and thermal burns. This may indicate the antioxidant activity of polymeric biocide.

In this study, PHMG-Cl has been synthesized by melt polycondensation of guanidine hydrochloride and 1,6-hexamethylenediamine. The structure of the cationic polymer was confirmed by 1H NMR and IR spectroscopy. The viscosity-average molecular weight of PHMG-Cl was found to be 10700. The antioxidant activity of PHMG-Cl has been studied by using different methods. In the methylene blue (MB) dye test, the oxidation of MB by hydroxyl radicals generating in Fenton’s system was found to decrease in the presence of PHMG-Cl in a molar ratio to MB of 5:1 and 10:1 (by 26 % and 38 %, respectively). At the same time, complete dye oxidation was observed when guanidine hydrochloride was used instead of PHMG-Cl.

The antioxidant activity of PHMG-Cl has also been studied in the model system of radical chain oxidation of benzyl alcohol (BA). In this system, alkyl and peroxyl radicals are formed. The antioxidant activity was determined by a decrease of the initial rate of oxygen absorption during the initiated oxidation of BA. The introduction of PHMG-Cl into the oxidized system in the concentrations ranged from 1.3·10-3 - 1.6·10-2 mol/l decreased the oxidation rate of BA by 4.5–88 %. This result demonstrates that PHMG-Cl effectively inhibits radical chain oxidation of BA. However, further research is needed to elucidate the mechanism of free radical deactivation by a polymer biocide.

https://doi.org/10.15407/kataliz2020.30.073
Article PDF

References

Carmona-Ribeiro A.M., de Melo Carrasco L.D. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci. 2013. 14(5). 9906-9946.

https://doi.org/10.3390/ijms14059906

Kaehn K. Polyhexanide: a safe and highly effective biocide. Skin Pharmacol. Physiol. 2010. 23. 7-16.

https://doi.org/10.1159/000318237

Oulè M. K., Azinwi R., Bernier A. M., Kablan T., Maupertuis A. M., Mauler S., Koffi-Nevry R., Dembèlè K., Forbes L., Diop L. Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J. Med. Microbiol. 2008. 57. 1523-1528.

https://doi.org/10.1099/jmm.0.2008/003350-0

Zhou Z., Wei D., Guan Y., Zheng A., Zhong J.-J. Extensive in vitro activity of guanidine hydrochloride polymer analogs against antibiotics-resistant clinically isolated strains. Mater. Sci. Eng. 2011. 31. 1836-1843.

https://doi.org/10.1016/j.msec.2011.08.015

Choi H., Kim K.-J., Lee D. J. Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal Biol. 2017. 121. 53-60.

https://doi.org/10.1016/j.funbio.2016.09.001

Qian L., Guan Y., He B., Xiao H. Modified guanidine polymers: Synthesis and antimicrobial mechanism revealed by AFM. Polymer. 2008. 49. 2471-2475.

https://doi.org/10.1016/j.polymer.2008.03.042

Zhou Z., Wei D., Guan Y., Zheng A., Zhong J.-J. Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. J. Appl. Microbiol. 2010. 108. 898-907.

https://doi.org/10.1111/j.1365-2672.2009.04482.x

Lysytsya A.V., Mandygra Y. M., Bojko О. Р., Romanishyna O. O, Mandygra M. S. Differential sensitivity of microorganisms to polyhexamethyleneguanidine. Mikrobiol Z. 2015. 77(5). 11-19. [In Ukrainian].

https://doi.org/10.15407/microbiolj77.05.011

Zhang Y., Jiang J., Chen Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer. 1999. 40. 6189-6198.

https://doi.org/10.1016/S0032-3861(98)00828-3

Asiedu-Gyekye I. J., Mahmood S. A., Awortwe C., Nyarko A. K. A preliminary safety evaluation of polyhexamethylene guanidine. Int. J. Toxicol. 2014. 33. 523-531.

https://doi.org/10.1177/1091581814553036

Asiedu-Gyekye I. J., Mahmood S. A., Awortwe C., Nyarko A. K. Toxicological assessment of polyhexame-thylene biguanide for water treatment. Interdiscip. Toxicol. 2015. 8. 193-202

https://doi.org/10.1515/intox-2015-0029

Caballero Gómez N., Abriouel H., Grande J., Pulido R. P., Gálvez A. Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells. Int. J. Food Microbiol. 2013. 163. 96-00.

https://doi.org/10.1016/j.ijfoodmicro.2013.02.018

Doroshenko A., Gorchakova N., Zaychenko G. Effect of a nanodispersion silica composite with polyhexamethylene guanidine hydrochloride on immunological indicators and indicators of oxidation and antioxidant homeostasis in rats with thermal burn. ScienceRise: Pharmaceutical Science. 2019. 4. 45-52.

https://doi.org/10.15587/2519-4852.2019.178951

Lebedeva S. N., Ochirov O. S., Stelmakh S. A., Grigoryeva M. N., Zhamsaranova S. D., Mognonov D. M. Wound healing effect of polyhexamethylene guanidine hydrochloride hydrogel at burns. Acta Biomed. Sci. 2017. 2 (4). 93-96. [In Rus.].

https://doi.org/10.12737/article_59fad51d481658.42549272

Schafer M., Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 2008. 58. 165-171.

https://doi.org/10.1016/j.phrs.2008.06.004

Nouvong A., Ambrus A. M., Zhang E. R., Hultman L., Coller H. A. Reactive oxygen species and bacterial biofilms in diabetic wound healing. Physiol. Genomics. 2016. 48. 889-896.

https://doi.org/10.1152/physiolgenomics.00066.2016

Lyoshyna L., Tarasyuk O., Bulko O., Rogalsky S., Kamenieva T., Kuchuk M. Effect of polymeric biocide polyhexamethylene guanidine hydrochloride on morpho-physiological and biochemical parameters of wheat seedlings under copper stress. Agricultural Science and Practice. 2020. 7(1). 49-58.

https://doi.org/10.15407/agrisp7.01.049

Dutta K., Mukhopadhyay S., Bhattacharjee S., Chaudhuri B. Chemical oxidation of methylene blue using Fenton-like reaction. J. Hazard. Mater. 2001. 84. 57-71.

https://doi.org/10.1016/S0304-3894(01)00202-3

Satoh A. Y., Trosko J. E., Masten S. J. Methylene blue dye test for rapid qualitative detection of hydroxyl ra-dicals formed in a Fenton's reaction aqueous solution. Environ. Sci. Technol. 2007. 41. 2881-2887.

https://doi.org/10.1021/es0617800

Denisov E. T., Afanas′ev I. B. Oxidation and anti-oxidants in organic chemistry and biology. CRC Press. 2005. Chapter 7. pp. 261-280.

https://doi.org/10.1201/9781420030853

Grigor'eva M. N., Stel'makh S. A., Astakhova S. A., Tsenter I. M., Bazaron L. U., Batoev V. B., Mognonov D. M. Synthesis of polyalkylguanidine hydrochloride copolymers and their antibacterial activity against conditionally pathogenic microorganisms Bacillus Cereus and Escherichia Coli. Pharmaceutical Chemistry Journal. 2015. 49. 99-103.

https://doi.org/10.1007/s11094-015-1230-z

Yildiz G., Demiryürek T., Sahin-Erdemli I., Kanzik I. Comparison of antioxidant activities of aminoguanidine, methylguanidine and guanidine by luminol-enhanced chemiluminescence. Br. J. Pharmacol. 1998. 124. 905-910.

https://doi.org/10.1038/sj.bjp.0701924

Morimoto S., Ito T., Fugita S., Nishimoto S. A pulse radiolysis study on the reactions of hydroxyl radical and sulfate radical anion with guanidine derivatives in aqueous solution. Chem. Phys. Lett. 2008. 461. 300-304.

https://doi.org/10.1016/j.cplett.2008.07.013

Kovtun G., Kameneva T., Hladyi S., Starchevsky M., Pazdersky Y., Stolarov I., Vargaftik M., Moiseev I. Oxidation, redox disproportionation and chain termination reactions catalysed by the Pd-561 giant cluster. Adv. Synth. Catal. 2002. 344. 957-964.

https://doi.org/10.1002/1615-4169(200210)344:9<957::AID-ADSC957>3.0.CO;2-V

Luo W., Jang J.-D., Cheng J.-P. Towards rational understanding of a-C-H functionalization: energetic studies of representative tertiary amines. iScience. 2020. 23(2). 100851

https://doi.org/10.1016/j.isci.2020.100851

Chen J., Shafi M., Li S., Wang Y., Wu J., Ye Z., Peng D., Yan W., Liu D. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Sci. Rep. 2015. 5. 13554.

https://doi.org/10.1038/srep13554