Catalysts for vapor phase condensation of С1-С4 alcohols with carbon chain elongation
Article PDF (Українська)

Keywords

ethanol, methanol, 1-butanol, 2-ethylhexanol, magnesia, alumina, zirconia, hydroxyapatite, acid-base characteristics

How to Cite

Valihura, K., & Soloviev, S. (2020). Catalysts for vapor phase condensation of С1-С4 alcohols with carbon chain elongation. Catalysis and Petrochemistry, (29), 32-51. https://doi.org/10.15407/kataliz2020.29.032

Abstract

One of the promising areas of research in chemistry and chemical technology is the creation of pro-cesses for the production of industrially important substances using renewable raw materials. С14 alcohols obtained from the processing of non-food biomass can be the source for the production of a number of valuable compounds. In particular, it could be made via the Guerbet condensation of alco-hols, which consist of elongation of the carbon chain involving such reactions as dehydrogenation, al-dol-croton condensation, hydrogenation and/or reduction. Of particular interest is the deve-lopment of heterogeneous catalysts for condensation of С14 alcohols in a flow reactor at atmospheric pressure with high selectivity and the yield of such target products as 1-propanol, 1-butanol, isobutanol, 2-ethylhexanol and other alcohols. Among the systems studied, MgO, Mg-Al-oxides, Zr-Ce(Y)-oxides and hydroxyapatite are able to accelerate the condensation of alcohols in the temperature range of 250-450 0C. The catalytic properties of these systems depend significantly on the acid-base character-istics of their surface. The optimal ratio of surface acid and base sites can be achieved by adjusting the composition and the ratio of the active components in the catalysts, which results in an increase in the yield of the Guerbet condensation products. Therefore, determining the nature and number of acid-base sites is the main priority for developing effective catalysts for the target process.

https://doi.org/10.15407/kataliz2020.29.032
Article PDF (Українська)

References

Gallo J.M.R., Bueno J.M.C., Schuchardt U. Catalytic Transformations of Ethanol for Biorefineries. Journal of the Brazilian Chemical Society. 2014. 25(12). 2229-2243. https://doi.org/10.5935/0103-5053.20140272
Sun J., Wang Y. Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catalysis. 2014. 4. 1078-1090. https://doi.org/10.1021/cs4011343
Cheon S., Kim H.M., Gustavsson M., Lee S.Y. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Current Opinion in Chemical Biology. 2016. 35, 10-21.https://doi.org/10.1016/j.cbpa.2016.08.003
Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management. 2011. 52(2). 858-875.https://doi.org/10.1016/j.enconman.2010.08.013
Roberto W., Trindade S., Gonçalves R., Santo D. Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. Renewable and Sustainable Energy Reviews. 2016. 69. 642-651. https://doi.org/10.1016/j.rser.2016.11.213
Zion Market Research. Renewable Chemicals Market To Register Humungous Growth, Revenue To Surge To US$ 102.76 Billion By 2022 (10.09.2018) [WWW document]. URL - https://www.zionmarketresearch.com/news/renewable-chemicals-market (document viewing 03.02.2020) (in English).
Posada J.A., Patel A.D., Roes A., Blok K., Faaij A.P.C., Patel M.K. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products. Bioresource Technology. 2013. 135. 490-499. https://doi.org/10.1016/j.biortech.2012.09.058
Brei V.V., Shchutkyi I.V. Bioethanol in Ukraine. Visnyk of National Academy of Sciences of Ukraine. 2016. 6. 71-76. (in Ukrainian).https://doi.org/10.15407/visn2016.06.071
Gabriëls D., Hernández W.Y., Sels B., Van Der Voort P., Verberckmoes A. Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catalysis Science Technology, 2015. 5(8). 3876-3902. https://doi.org/10.1039/C5CY00359H
Patel A.D., Telalović S., Bitter J.H., Worrell E., Patel M.K. Analysis of sustainability metrics and application to the catalytic production of higher alcohols from ethanol. Catalysis Today. 2015. 239. 56-79.https://doi.org/10.1016/j.cattod.2014.03.070
Dias M.O.S., Pereira L.G., Junqueira T.L., Pavanello L.G., Chagas M.F., Cavalett O., Bonomi A. Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part I: Integration to a first generation sugarcane distillery. Chemical Engineering Research and Design. 2014. 92(8), 1441-1451.https://doi.org/10.1016/j.cherd.2014.04.030
Larina O.V, Valihura K.V, Kyriienko P.I., Vlasenko N.V, Yu D., Khalakhan I., Soloviev S.O., Orlyk S.M. Successive vapour phase Guerbet condensation of ethanol and 1-butanol over Mg-Al oxide catalysts in a flow reactor. Applied Catalysis A. General. 2019. 588(117265). 1-11. https://doi.org/10.1016/j.apcata.2019.117265
Valihura K.V., Larina O.V., Kyriienko P.I., Vlasenko N.V, Soloviev S.O. Theoretical and Experimental Chemistry. 2019. 55. 309-315. (in Russian).https://doi.org/10.1007/s11237-019-09626-1
Vlasenko N.V., Kyriienko P.I., Valihura K.V., Yanushevska O.I., Soloviev S.O., Strizhak P.E. Theoretical and Experimental Chemistry. 2019. 55. 43-49. https://doi.org/10.1007/s11237-019-09594-6
Vlasenko N.V., Kyriienko P.I., Yanushevska O.I., Valihura K.V., Soloviev S.O., Strizhak P.E. The Effect of Ceria Content on the Acid-Base and Catalytic Characteristics of ZrO2-CeO2 Oxide Compositions in the Process of Ethanol to n-Butanol Condensation. Catalysis Letters. 2020. 150(1). 234-242. https://doi.org/10.1007/s10562-019-02937-x
Vlasenko N.V, Kyriienko P.I., Valihura K.V, Kosmambetova G.R., Soloviev S.O., Strizhak P.E. Yttria-Stabilized Zirconia as a High-Performance Catalyst for Ethanol to n Butanol Guerbet Coupling. ACS Omega. 2019. 4(25). 21469-21476. https://doi.org/10.1021/acsomega.9b03170
Guerbet M. Action de l'alcool amylique de fermentation sur son dérivé sodé. Comptes Rendus. 1899. 128. 511-513.
O'Lenick A. J. Guerbet Chemistry. Journal of Surfactants and Detergents. 2001. 4. 311-315. https://doi.org/10.1007/s11743-001-0185-1
Angelici, C., Weckhuysen, B. M., Bruijnincx, P. C. A. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem. 2013. 6(9). 1595-1614. https://doi.org/10.1002/cssc.201300214
Chieregato A., Ochoa J.V., Bandinelli C., Fornasari G., Cavani F., Mella M. On the chemistry of ethanol on basic oxides: Revising mechanisms and intermediates in the lebedev and guerbet reactions. ChemSusChem. 2015. 8(2). 377-388. https://doi.org/10.1002/cssc.201402632
Gines M.J.L., Iglesia E. Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium. Journal of Catalysis. 1998. 176. 155-172. https://doi.org/10.1006/jcat.1998.2009
Scalbert J., Thibault-Starzyk F., Jacquot R., Morvan D., Meunier F. Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: How relevant is acetaldehyde self-aldolization? Journal of Catalysis. 2014. 311. 28-32. https://doi.org/10.1016/j.jcat.2013.11.004
Meunier F.C., Scalbert J., Thibault-Starzyk F. Unraveling the mechanism of catalytic reactions through combined kinetic and thermodynamic analyses: Application to the condensation of ethanol. Comptes Rendus Chimie. 2015. 18. 345-350. https://doi.org/10.1016/j.crci.2014.07.002
Ogo S., Onda A., Yanagisawa K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Applied Catalysis A: General. 2011. 402(1-2). 188-195. https://doi.org/10.1016/j.apcata.2011.06.006
Burk P.L., Pruett R.L., Campo K.S. The rhodium-promoted guerbet reaction. Part I. Higher alcohols from lower alcohols. Journal of Molecular Catalysis. 1985. 33. 1-4. https://doi.org/10.1016/0304-5102(85)85012-4
Di Cosimo J.I., Apesteguía C.R., Ginés M.J.L., Iglesia E. Structural Requirements and Reaction Pathways in Condensation Reactions of Alcohols on MgyAlOx Catalysts. Journal of Catalysis. 2000. 190(2). 261-275. https://doi.org/10.1006/jcat.1999.2734
Nagarajan V. Kinetics of a complex reaction system-preparation of n-butanol from ethanol in one step. Lndian Journal of Technology. 1971. 9. 380-386.
Ndou A.S., Plint N., Coville N.J. Dimerisation of ethanol to butanol over solid-base catalysts. Applied Catalysis A: General. 2003. 251(2). 337-345. https://doi.org/10.1016/S0926-860X(03)00363-6
Veibel S., Nielsen J.I. On the mechanism of the Guerbet reaction. Tetrahedron. 1967. 23. 1723-1733. https://doi.org/10.1016/S0040-4020(01)82571-0
Weizmann C., Bergmann E., Sulzbacher M. Further observations on the guerbet reaction. Journal of Organic Chemistry. 1950. 15(1). 54-57. https://doi.org/10.1021/jo01147a010
Ndaba B., Chiyanzu I., Marx S. N-Butanol derived from biochemical and chemical routes: A review. Biotechnology Reports. 2015. 8. 1-9. https://doi.org/10.1016/j.btre.2015.08.001
Rajesh Kumar B., Saravanan S. Use of higher alcohol biofuels in diesel engines: A review. Renewable and Sustainable Energy Reviews. 2016. 60. 84-115. https://doi.org/10.1016/j.rser.2016.01.085
Niemisto J., Saavalainen P., Pongracz E., Keiski R.L. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks. Journal of Sustainable Development of Energy, Water and Environment Systems. 2013. 1(2). 58-77. https://doi.org/10.13044/j.sdewes.2013.01.0005
Fenkl M., Pechout M., Vojtisek M. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics. EPJ Web of Conferences. 2016. 114. 02021. https://doi.org/10.1051/epjconf/201611402021
Uyttebroek M., Van Hecke W., Vanbroekhoven K. Sustainability metrics of 1-butanol. Catalysis Today. 2015. 239. 7-10. https://doi.org/10.1016/j.cattod.2013.10.094
Zheng J., Tashiro Y., Wang Q., Sonomoto K. Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. Journal of Bioscience and Bioengineering. 2015. 119(1). 1-9. https://doi.org/10.1016/j.jbiosc.2014.05.023
Tsuchida T., Kubo J., Yoshioka T., Sakuma S., Takeguchi T., Ueda W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. Journal of Catalysis. 2008. 259. 183-189. https://doi.org/10.1016/j.jcat.2008.08.005
Di Cosimo J.I., Díez V.K., Xu M., Iglesia E., Apesteguía C.R. Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. Journal of Catalysis. 1998). 178. 499-510. https://doi.org/10.1006/jcat.1998.2161
Zhang Q., Dong J., Liu Y., Wang Y., Cao Y. Towards a green bulk-scale biobutanol from bioethanol upgrading. Journal of Energy Chemistry. 2016. 25. 907-910. https://doi.org/10.1016/j.jechem.2016.08.010
Ndou A.S., Coville, N.J. Self-condensation of propanol over solid-base catalysts. Applied Catalysis A: General. 2004. 275(1-2). 103-110.https://doi.org/10.1016/j.apcata.2004.07.025
Hanspal S., Young Z.D., Shou H., Davis R.J. Multiproduct steady-state isotopic transient kinetic analysis of the ethanol coupling reaction over hydroxyapatite and magnesia. ACS Catalysis. 2015. 5. 1737-1746. https://doi.org/10.1021/cs502023g
Birky T.W., Kozlowski J.T., Davis R.J. Isotopic transient analysis of the ethanol coupling reaction over magnesia. Journal of Catalysis. 2013. 298. 130-137. https://doi.org/10.1016/j.jcat.2012.11.014
Ueda W., Kuwabara T., Ohshida T., Morikawa Y. A low-pressure guerbet reaction over magnesium oxide catalyst. Journal of the Chemical Society, Chemical Communications. 1990. 22. 1558-1559. https://doi.org/10.1039/c39900001558
Ramasamy K.K., Gray M., Job H., Santosa D., Li X.S., Devaraj A., Wang Y. Role of Calcination Temperature on the Hydrotalcite Derived MgO-Al2O3 in Converting Ethanol to Butanol. Topics in Catalysis. 2016. 59(1). 46-54. https://doi.org/10.1007/s11244-015-0504-8
Ramasamy K.K., Gray M., Job H., Smith C., Wang Y. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds. Catalysis Today. 2016. 269. 82-87. https://doi.org/10.1016/j.cattod.2015.11.045
León M., Díaz E., Ordóñez S. Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites. Catalysis Today. 2011. 164. 436-442. https://doi.org/10.1016/j.cattod.2010.10.003
Carvalho D.L., De Avillez R.R., Rodrigues M.T., Borges L.E.P., Appel L.G. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Applied Catalysis A: General. 2012. 415-416, 96-100. https://doi.org/10.1016/j.apcata.2011.12.009
Kikhtyanin O., Čapek L., Smoláková L., Tišler Z., Kadlec D., Lhotka M., Kubička D. Influence of Mg-Al Mixed Oxide Compositions on Their Properties and Performance in Aldol Condensation. Industrial and Engineering Chemistry Research. 2017. 56(45). 13411-13422. https://doi.org/10.1021/acs.iecr.7b03367
Othman M.R., Helwani Z., Martunus, Fernando W.J.N. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Applied Organometallic Chemistry. 2009. 23. 335-346. https://doi.org/10.1002/aoc.1517
Quesada J., Faba L., Díaz E., Ordóñez S. Role of the surface intermediates in the stability of basic mixed oxides as catalyst for ethanol condensation. Applied Catalysis A: General. 2017. 542. 271-281. https://doi.org/10.1016/j.apcata.2017.06.001
Hosoglu F., Faye J., Mareseanu K., Tesquet G., Miquel P., Capron M., Dumeignil F. High resolution NMR unraveling Cu substitution of Mg in hydrotalcites-ethanol reactivity. Applied Catalysis A: General. 2015. 504. 533-541. https://doi.org/10.1016/j.apcata.2014.10.005
León M., Díaz E., Vega A., Ordóñez S., Auroux A. Consequences of the iron-aluminium exchange on the performance of hydrotalcite-derived mixed oxides for ethanol condensation. Applied Catalysis B: Environmental. 2011. 102(3-4). 590-599.https://doi.org/10.1016/j.apcatb.2010.12.044
Bessudnov A.E., Kustov L.M., Mishin I. V., Mikhailov M.N. Phase composition of Mg-Al mixed oxides, their activity and selectivity in the ethanol condensation reaction. Russian Chemical Bulletin, International Edition. 2017. 66. 666-672 (in Russian). https://doi.org/10.1007/s11172-017-1789-5
Ordóñez S., Díaz E., León M., Faba L. Hydrotalcite-derived mixed oxides as catalysts for different C-C bond formation reactions from bioorganic materials. Catalysis Today. 2011. 167. 71-76. https://doi.org/10.1016/j.cattod.2010.11.056
Tyagi B., Sidhpuria K., Shaik B., Jasra R.V. Synthesis of nanocrystalline zirconia using sol-gel and precipitation techniques. Industrial and Engineering Chemistry Research. 2006. 45(25). 8643-8650. https://doi.org/10.1021/ie060519p
Kozlowski J.T., Behrens M., Schlögl R., Davis R.J. Influence of the precipitation method on acid-base-catalyzed reactions over Mg-Zr mixed oxides. ChemCatChem. 2013. 5. 1989-1997. https://doi.org/10.1002/cctc.201200833
Kozlowski J.T., Davis R.J. Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. Journal of Energy Chemistry. 2013. 22(1). 58-64. https://doi.org/10.1016/S2095-4956(13)60007-8
Di Monte R., Kašpar J. Nanostructured CeO2-ZrO2 mixed oxides. Journal of Materials Chemistry. 2005. 15(6). 633-648. https://doi.org/10.1039/B414244F
Zavodinsky V.G., Chibisov A.N. Stability of cubic zirconia and of stoichiometric zirconia nanoparticles. Physics of the Solid State. 2006. 48(2). 363-368. https://doi.org/10.1134/S1063783406020296
Madier Y., Descorme C., Le Govic A.M., Duprez D. Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds: Study by CO transient oxidation and 18O/16O isotopic exchange. Journal of Physical Chemistry B. 1999. 103(50). 10999-11006. https://doi.org/10.1021/jp991270a
Sergent N., Lamonier J.F., Aboukais A. Electron paramagnetic resonance in combination with the thermal analysis, X-ray diffraction, and Raman spectroscopy to follow the structural properties of ZrxCe1-xO2 solid systems and precursors. Chemistry of Materials. 2000. 12(12). 3830-3835. https://doi.org/10.1021/cm000315d
Ma Z.Y., Yang C., Wei W., Li W.H., Sun Y.H. Surface properties and CO adsorption on zirconia polymorphs. Journal of Molecular Catalysis A: Chemical. 2005. 227(1-2). 119-124. https://doi.org/10.1016/j.molcata.2004.10.017
Tanabe K., Yamaguchi T. Acid-base bifunctional catalysis by ZrO2 and its mixed oxides. Catalysis Today. 1994. 20(2). 185-197. https://doi.org/10.1016/0920-5861(94)80002-2
Zhu J., van Ommen J.G., Lefferts L. Effect of surface OH groups on catalytic performance of yittrium-stabilized ZrO2 in partial oxidation of CH4 to syngas. Catalysis Today. 2006. 117(1-3). 163-167. https://doi.org/10.1016/j.cattod.2006.05.046
Santos V., Zeni M., Bergmann C. P., Hohemberger J. M. Correlation between thermal treatment and tetragonal/monoclinic nanostructured zirconia powder obtained by sol-gel process. Reviews on Advanced Materials Science. 2008. 17(1-2). 62-70.
Kamieniak J., Doyl A. M., Kelly P.J., Banks C.E. Novel synthesis of mesoporous hydroxyapatite using carbon nanorods as a hard-template. Ceramics International. 2017. 43(7). 5412-5416. https://doi.org/10.1016/j.ceramint.2017.01.030
Tsuchida T., Sakuma S., Takeguchi T., Ueda W. Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite. Industrial and Engineering Chemistry Research. 2006. 45. 8634-8642. https://doi.org/10.1021/ie0606082
Hill I.M., Hanspal S., Young Z.D., Davis R.J. DRIFTS of Probe Molecules Adsorbed on Magnesia, Zirconia, and Hydroxyapatite Catalysts. Journal of Physical Chemistry C. 2015. 119(17). 9186-9197. https://doi.org/10.1021/jp509889j
Ho C.R., Shylesh S., Bel A. T. Mechanism and Kinetics of Ethanol Coupling to Butanol over Hydroxyapatite. ACS Catalysis. 2016. 6(2). 939-948. https://doi.org/10.1021/acscatal.5b02672
Ogo S., Onda A., Iwasa Y., Hara K., Fukuoka A., Yanagisawa K. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. Journal of Catalysis. 2012. 296. 24-30. https://doi.org/10.1016/j.jcat.2012.08.019
Silvester L., Lamonier J.F., Lamonier C., Capron M., Vannier R.N., Mamede A.S., Dumeignil F. Guerbet Reaction over Strontium-Substituted Hydroxyapatite Catalysts Prepared at Various (Ca+Sr)/P Ratios. ChemCatChem. 2017. 9(12). 2250-2261. https://doi.org/10.1002/cctc.201601480
Silvester L., Lamonier J.F., Faye J., Capron M., Vannier R.N., Lamonier C., Dumeignil F. Reactivity of ethanol over hydroxyapatite-based Ca-enriched catalysts with various carbonate contents. Catalysis Science and Technology. 2015. 5(5). 2994-3006. https://doi.org/10.1039/C5CY00327J
Gotoh K., Nakamura S., Mori T., Morikawa Y. Supported alkali salt catalysts active for the guerbet reaction between methanol and ethanol. Studies in Surface Science and Catalysis. 2007. 130. 2669-2674. https://doi.org/10.1016/S0167-2991(00)80873-3
Yang C., Meng Z. Y. Bimolecular condensation of ethanol to 1-Butanol catalyzed by alkali cation zeolites. Journal of Catalysis. 1993. 142. 37-44. https://doi.org/10.1006/jcat.1993.1187
Patent № 2014/137212 WO. C07D405/14, C07D471/04, C07D491/048, C09K11/06, H01L51/0072, H01L51/0073, H05B33/14. Van Hal J.W., Grisel R.J.H. Procédé pour la préparation d'alcools β-alkylés. France. Ppublication date 23.01.2014 (in French).
Tesquet G., Faye J., Hosoglu F., Mamede A., Dumeignil F., Capron M. General Ethanol reactivity over La1+xFeO3+y perovskites. Applied Catalysis A. 2016. 511. 141-148. https://doi.org/10.1016/j.apcata.2015.12.005
Li X.N., Peng S.S., Feng L.N., L S. Q., Ma L.J., Yue M.B. One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol. Microporous and Mesoporous Materials. 2018. 261. 44-50. https://doi.org/10.1016/j.micromeso.2017.11.004
Cimino S., Apuzzo J., Lisi L. MgO dispersed on activated carbon as water tolerant catalyst for the conversion of ethanol into butanol. Applied Sciences (Switzerland). 2019. 9(7). 1371. https://doi.org/10.3390/app9071371
Cheng F., Guo H., Cui J., Hou B., Li D. Guerbet reaction of methanol and ethanol catalyzed by CuMgAlOx mixed oxides: Effect of M2+/Al3+ ratio. Journal of Fuel Chemistry and Technology. 2018. 46(12). 1472-1481. https://doi.org/10.1016/S1872-5813(18)30061-6
Bravo-Suárez J.J., Subramaniam B., Chaudhari R.V. Vapor-phase methanol and ethanol coupling reactions on CuMgAl mixed metal oxides. Applied Catalysis A: General. 2013. 455. 234-246. https://doi.org/10.1016/j.apcata.2013.01.025
Stošić D., Hosoglu F., Bennici S., Travert A., Capron M., Dumeignil F., Auroux A. Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7. Catalysis Communications. 2017. 89. 14-18. https://doi.org/10.1016/j.catcom.2016.10.013
Ueda W., Ohshida T., Kuwabara T., Morikawa Y. Condensation of alcohol over solid-base catalyst to form higher alcohols. Catalysis Letters. 1992. 12. 97-104. https://doi.org/10.1007/BF00767192
Carlini C., Marchionna M., Noviello M., Raspolli Galletti A.M., Sbrana G., Basile F., Vaccari A. Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous bifunctional catalysts based on Mg-Al mixed oxides partially substituted by different metal components. Journal of Molecular Catalysis A: Chemical. 2005. 232. 13-20. https://doi.org/10.1016/j.molcata.2004.12.037
Knothe G. Synthesis, applications, and characterization of Guerbet compounds and their derivatives. Lipid Technology. 2002. September. 101-104.
Carlini C., Macinai A., Marchionna M., Noviello M., Raspolli Galletti A. M., Sbrana G. Selective synthesis of isobutanol by means of the Guerbet reaction - Part 3: Methanol/n-propanol condensation by using bifunctional catalytic systems based on nickel, rhodium and ruthenium species with basic components. Journal of Molecular Catalysis A: Chemical. 2003. 206. 409-418. https://doi.org/10.1016/S1381-1169(03)00453-9
Liang N., Zhang X., An H., Zhao X., Wang Y. Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation-hydrogenation reaction integration over a Ni/Ce-Al2O3 bifunctional catalyst. Green Chemistry. 2015. 17. 2959-2972. https://doi.org/10.1039/C5GC00223K
Patankar S.C., Yadav G.D. Cascade engineered synthesis of 2-ethyl-1-hexanol from n-butanal and 2-methyl-1-pentanol from n-propanal using combustion synthesized Cu/Mg/Al mixed metal oxide trifunctional catalyst. Catalysis Today. 2017. 291. 223-233. https://doi.org/10.1016/j.cattod.2017.01.008
Patent № 8779216 B2. C07C29/34, C07C31/125. Wick A., Mahnke E.U. Method for Producing Guerbet Alcohols. United States. Publication date 15.07.2014.
Patent № 20130068457 A1 C07C303/24. Thach S., Shong R., Dwarakanath V. Method of Manufacture of Guerbet Alcohols For Making Surfactants Used In Petroleum Industry Operations. United States. Publication date 21.03.2013.
Patent № 2013120757 WO C07C29/34, A61K8/34, A61K9/00, A61K9/0014, A61K9/06, A61Q19/00, C07C31/125, A61K2800/10, A61K2800/5922, A61Q19/10. Thach S., Shong R., Dwarakanath V. Alcools de guerbet en tant que substituts de la vaseline. France. Publication date 22.08.2013 (in French).
Miller R.E., Bennett G.E. Producing 2-Ethylhexanol by the Guerbet Reaction. Research and Engineering Division. 1961. 53(1). 33-36. https://doi.org/10.1021/ie50613a027
Carlini C., Macinai A., Raspolli Galletti A. M., Sbrana G. Selective synthesis of 2-ethyl-1-hexanol from n-butanol through the Guerbet reaction by using bifunctional catalysts based on copper or palladium precursors and sodium butoxide. Journal of Molecular Catalysis A: Chemical. 2004. 212. 65-70. https://doi.org/10.1016/j.molcata.2003.10.045
Matsu-Ura T., Sakaguchi S., Obora Y., Ishii Y. Guerbet Reaction of Primary Alcohols Leading to β-Alkylated Dimer Alcohols Catalyzed by Iridium Complexes. Journal of Organic Chemistry. 2006. 38(8). https://doi.org/10.1021/jo061400t
Hamilton C. A., Jackson S. D., Kelly G. J. Solid base catalysts and combined solid base hydrogenation catalysts for the aldol condensation of branched and linear aldehydes. Applied Catalysis A: General. 2004. 263. 63-70. https://doi.org/10.1016/j.apcata.2003.12.009
Liang N., Zhang X., An H., Zhao X., Wang Y. Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation-hydrogenation reaction integration over a Ni/Ce-Al2O3 bifunctional catalyst. Green Chemistry. 2015. 17. 2959=2972. https://doi.org/10.1039/C5GC00223K