The pathways of the phthalic andydride selectivity and yield increase at C4-C5-hydrocarbons oxidation
Article PDF (Українська)

Keywords

catalytic oxidation, phthalic anhydride, n-pentane, n-butane, vanadium-phosphorus oxide catalyst

How to Cite

Kiziun, O. V., & Zazhigalov, V. O. (2022). The pathways of the phthalic andydride selectivity and yield increase at C4-C5-hydrocarbons oxidation. Catalysis and Petrochemistry, (33), 21-30. https://doi.org/10.15407/kataliz2022.33.021

Abstract

The investigation of n-butane and n-pentane oxidation in system with two consecutive reactors confirmed the mechanism of phthalic anhydride formation by Diels-Alder reaction between maleic anhydride and C4 unsaturated hydrocarbons. The process is limited by low stationary concentration of C4 unsaturated hydrocarbons in reaction mixture which is connected with high rate of their oxidation to maleic anhydride. It was shown that n-butane oxidation leads to formation of maleic anhydride only but the introduction of unsaturated C4-hydrocarbons on inlet of the second catalytic reactor accompanied by phthalic anhydride appearance on outlet of these two consecutive reactors system. It was established that in case of 1,3-butene introduction in the second reactor the quantity of phthalic anhydride formed is more than in case of 2-butene addition. It was predicted that a decrease of the temperature in the second reactor can leads to an increase the phthalic anhydride selectivity and its yield as result of Diels-Alder reaction effectiveness. This assumption was confirmed by experimental results. In results the method of phthalic anhydride production by the use of two consecutive reactors was proposed. The summary yield of this product on this new process can reach up to 35 mol. %. In the case of n-pentane oxidation the formation of maleic and phthalic anhydrides was observed with excess of first product but the introduction of unsaturated C4-hydrocarbons in the inlet of second reactor leads to an increase of the phthalic anhydride concentration and its selectivity and yield. In result the yield of phthalic anhydride equal to 35 mol. % can be obtained. So, the proposed by us mechanism of phthalic anhydride was confirmed by new experimental results and other pathways for the selectivity and yield of this product can be predicted.

https://doi.org/10.15407/kataliz2022.33.021
Article PDF (Українська)

References

Grzybowska-Swierkosz B. Vanadia-titania catalysts for oxidation of o-xylene and other hydrocarbons. Applied Catalysis A: General, 1997. 157 (1-2), 263–310.

Schimmoeller B., Schulz H., Ritter A., Reitzmann A., Kraushaar-Czarnetzki B., Baiker A., Pratsinis S.E. Structure of flame-made vanadia/titania and catalytic behavior in the partial oxidation of o-xylene. Journal of Catalysis, 2008. 256 (1), 74–83.

Dias C.R., Portela M.F. Synthesis of phthalic anhydride: catalysts, kinetics, and reaction modeling. Catalysis Review - Science and Engineering, 1997. 39 (3), 169–207.

Centi G., Lopez Nieto J., Pinelli D., Trifiro F. Synthesis of phthalic and maleic anhydrides from n-pentane. 1.Kinetic analysis of the reaction network. Industrial and Engineering Chemistry Research, 1989. 28 (4), 400–406.

Sobalik Z., Gonzalez S., Ruiz P. Influence of the precursor formation stage in the preparation of VPO catalysts for selective oxidation of n-pentane. Studies in Surface Science and Catalysis, 1995. 91, 727–736.

Sookraj S., Engelbrecht D. Selective oxidation of light hydrocarbons over promoted vanadyl pyrophosphate. Catalysis Today, 1999. 49 (1-3), 161–169.

Zazhigalov V.A., Cheburakova E.V. Partsial’noe okislenie n-pentana v prisutstvii VPBiO-katalizatorov. Catalysis and Petrochemistry, 2003. 11, 98–103.

Cheburakova E.V., Aleksandrova V.S., Bacherikova I.V., Zazhigalov V.A. Vliyanie dobavok na fiziko-chimicheskie svojstva poverchnosti VPO-katalizatora. Catalysis and Petrochemistry, 2006. 14, 102–111.

Haber J., Stoch J., Zazhigalov V.A., Bacherikova I.V., Cheburakova E.V. Selective oxidation of light alkanes on transition metal promoted vanadyl pyrophosphate (VPO) catalysts. Polish Journal of Chemistry, 2008. 82 (6), 1839–1852.

Cavani F., Colombo A., Guintoli F., Gobbi E., Trifiro F., Vazquez P. Role of surface properties of the vanadyl pyrophosphate in the formation of maleic and phthalic anhydrides by n-pentane oxidation. Catalysis Today, 1996. 32 (1-4), 125–132.

Zazhigalov V.O., Kizyun O.V. Oderzhannya anhidridnych prodyktiv okysnennyam n-pentanu na VPO-katalizatorach. Catalysis and Petrochemistry, 2020. 30, 19–37.

Golinelli G., Gleaves J.T. Selective oxidation of n-pentane and 2-pentene over (VO)2P2O7: continuous-flow and transient studies at subatmospheric pressures. Journal of Molecular Catalysis, 1992. 73 (3), 353–369.

Fumagalli C., Golinelli G., Mazzoni G., Messori M., Stefani G., Trifiro F. Production of maleic and phthalic anhydrides by selective vapor phase oxidation with vanadium oxide based catalysts. Studies in Surface Science and Catalysis, 1994. 82, 221–231.

Centi G., Pinelli D., Trifiro F., Ungarelli F., Lopez Nieto J. Synthesis of phthalic and maleic anhydrides from n-pentane: reactivity of possible intermediates and co-feeding experiments. Studies in Surface Science and Catalysis, 1990. 55, 635–642.

Centi G. Golinelli, G. Busca G. Modification of the surface pathways in alkane oxidation by selective doping of Bronsted acid sites of vanadyl pyrophosphate. Journal of Physical Chemistry, 1990. 94 (17), 6813-6819.

Sobalik Z., Carrazan S.G., Ruiz P., Delmon B. Influence of fine structural characteristics of VPO catalysts on the formation of maleic and phthalic anhydrides in the oxidation of n-pentane. Journal of Catalysis, 1999. 185 (2), 272–285.

Zazhigalov V.A., Haber J., Stoch J., Cheburakova E.V. The mechanism of n-pentane partial oxidation on VPO and VPBiO catalysts. Catalysis Communications, 2001. 2 (11-12), 375–378.

Zazhigalov V. A., Kiziun E.V. Formation of phthalic anhydride by Diels-Alder reaction during n-pentane oxidation on VPO catalysts and control the process selectivity. Theoretical and Experimental Chemistry, 2017. 53 (3), 194–198.

Ingold K. Teoreticheskie osnovy organicheskoj chimii. – Moskva: Mir, 1973. – 1056 p.

Zazhigalov V.A., Cheburakova E.V., Gansior M., Stoch J. Mechanism of phthalic anhydride formation in the oxidation of n-pentane on a vanadium-phosphorus oxide catalyst. Kinetics and Catalysis, 2006. 47(6), 803–811.

Cheburakova E.V., Zazhigalov V.A. Reaction mechanism-based design of efficient VPO catalysts for n-C5H12 oxidation into phthalic, maleic and citraconic anhydrides. Kinetics and Catalysis, 2008. 49, (4), 552–561.

Zazhigalov V. A. The role of the geometric factore in the selective oxidationof lower paraffins at VPO catalysts. Theoretical and Experimental Chemistry, 1999. 35 (5), 247–257.

Zazhigalov V.A. Effect of bismuth additives on the properties of vanadium phosphorus oxide catalysts in the partial oxidation of n-pentane. Kinetics and Catalysis, 2002. 43, (4), 514–521.

Vedrine J.C. Metal Oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. ChemSusChem, 2019, 12 (3), 577-588.

Centi G. Selective heterogeneous oxidation of light alkanes. What differentiates alkane from alkene feedstocks? Catalysis Letters. 1993, 22 (1), 53–66.

Miyamoto K., Nitadori T., Mizuno N., Okuhara T., Misono M. The important step of the selective oxidation of n-butane over (VO)2P2O7. Chemistry Letters. 1988, 17 (2), 303–306.

Centi G., Burattini M., Trifiro F. Oxi-condensation of n-Pentane to phthalic anhydride. Applied catalysis. 1987, 32, 353–356.

Centi G., Trifiro F. Surface kinetics of adsorbed intermediates: selective oxidation of C4-C5 alkanes. Chemical Engineering Science. 1990, 45 (8), 2589–2596.

Kontaktnye reaktcii furanovych soedinenij (Shimanskaya M.V. – Edt.) – Riga: Zinatne, 1985. – 301 p.

Pyatnitskaya A.I., Komashko G.A., Zazhigalov V.A., Gorokhovatskii Ya.B. n-Butane oxidation over a vanadium phosphorus catalysts. Reaction Kinetics Catalysis Letters. 1977, 6 (3), 341-347.

Centi G., Cavani F., Trifiro F. Selective oxidation by heterogeneous catalysis. – New York, Boston, Dordrecht – Kluwer Acad., 2001. – 505 p.