Influence of mechanochemical treatment of a mixture of two oxides based on TiO2 on the physico-chemical and photocatalytic properties of the obtained composites in the degradation of metronidazole
Article PDF (Українська)

Keywords

mechanochemical treatment, titanium oxide-metal oxide compositions, photocatalysis, metronidazole

How to Cite

Kiziun, O. V., Sachuk, O. V., Zazhigalov, V. O., & Kotynska, L. Y. (2023). Influence of mechanochemical treatment of a mixture of two oxides based on TiO2 on the physico-chemical and photocatalytic properties of the obtained composites in the degradation of metronidazole. Catalysis and Petrochemistry, (34), 60-72. https://doi.org/10.15407/kataliz2023.34.060

Abstract

The effect of mechanochemical treatment of oxide composites based on TiO2 (TiO2/ZnO, TiO2/ZrO2, TiO2/MgO, TiO2/SnO2, TiO2/Nb2O5 with a molar ratio of 1:1) on their physical and chemical properties was investigated. It is shown that this treatment leads to a change in the crystal structure of the initial oxides without the formation of new phases, a significant grinding of particles, which is sometimes accompanied by amorphization of both or one of the oxides. As a result of mechanochemical treatment, the specific surface of the composites increases, except for the TiO2/Nb2O5 sample for which grinding is accompanied by agglomeration, which leads to a some decrease in the specific surface. It was established that as a result of the treatment, the morphology of the surface of the compositions changes, and in some cases the elements are redistributed in the near-surface layer. A significant decrease in the size of oxide particles leads to the formation of zones of dense contact between oxides in the composite. The photocatalytic properties of the original compositions and samples after their mechanochemical treatment in the reaction of degradation of metronidazole under ultraviolet radiation were established. It is shown that the photoreaction rate constant and the degree of metronidazole degradation do not depend on the band gap width, which is explained by the greater influence of local activation on the photoprocess than the collective properties of the solid body. It was established that a mixture of titanium oxide with another oxide leads to the formation of an effective catalyst for the photodegradation of metronidazole with a transformation degree of 95-98 % (after 5 hours of reaction), which is 4-7 % higher than that of the original titanium oxide.

https://doi.org/10.15407/kataliz2023.34.060
Article PDF (Українська)

References

Avvakumov E., Senna M., Kosova N. Soft mechanochemical synthesis: a basis for new chemical technologies. - Kluwer Academic Publishers, Dordrecht, 2001. - 216 p.

Baláź P. Mechanochemistry in nanosciance and minerals engineering. - Springer, Berlin, 2008. - 413 p.

Suryanarayana C. Mechanical alloying and milling. - Marcel Dekker, New York, 2004. - 482 p.

https://doi.org/10.1201/9780203020647

Poluboyarov V.A., Korotaeva Z.A., Andryushkova O.A. Preparation of ultrafine perticles by mechanical processing. Inorg. Mater., 2001, 37, 496-499.

https://doi.org/10.1023/A:1017585018929

Sachuk O., Zazhigalov V., Kuznetsova L., Shcherbakov C. The influence of mechanochemical activation on the Zn-Ce-O composition properties. Ads. Sci. and Techn., 2017, 35(9-10), 845-852.

https://doi.org/10.1177/0263617417719823

Szczęśniak B., Borysiuk S., Choma J., Jaroniec M. Mechanochemical synthesis of highly porous materials. Mater. Horiz., 2020, 7, 1457-1473.

https://doi.org/10.1039/D0MH00081G

Sachuk O.V., Zazhigalov V.O., Kiziun O.V., Hes N.L., Mylin A.M., Kotynska L.Yo., Kuznetsova L.S., Shcherbakov S.M., Kordan V.M. Influence of mechanochemical and sonochemical methods of preparation of TiO2/ZrO2 composites on photocatalytic performance in prometrine decomposition. Theor. Exp. Chem., 2022, 58(3), 190-197.

https://doi.org/10.1007/s11237-022-09735-4

Bellis J., Felderhoff M., Schüth F. Mechanochemical Synthesis of Supported Bimetallic Catalysts. Chem. Mater., 2021, 33, 2037-2045.

https://doi.org/10.1021/acs.chemmater.0c04134

Klavarioti M., Mantzavinos D., Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Envir. Intern., 2009, 35(2), 402-417.

https://doi.org/10.1016/j.envint.2008.07.009

Mounir B., Pons M.N., Zahraa O., Yaacoubi A., Benhammou A. Discoloration of a red cationic dye by supported TiO2 photocatalysis. J. Hazard. Mater., 2007, 148(3), 513-520.

https://doi.org/10.1016/j.jhazmat.2007.03.010

Derikvandi H., Nezamzadeh-Ejhieh A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater., 2017, 321, 629-638.

https://doi.org/10.1016/j.jhazmat.2016.09.056

Kaneko M., Okura I. Photocatalysis: science and technology. - Springer, Heidelberg, 2002. - 356 p.

Farzadkia M., Bazrafshan E., Estrafili A., Yang J.K., Shirzad-Siboni M. Photocatalytic degradation of methronidazole with illuminated TiO2 nanoparticles. J. Environ. Health. Sci. Eng., 2015, 12(35), 1-8.

https://doi.org/10.1186/s40201-015-0194-y

Stando K., Kasprzyk P., Felis E., Bajkacz S. Heterogeneous photocatalysis of metronidazole in aquatic samples. Molecules., 2021, 26, 1-16.

https://doi.org/10.3390/molecules26247612

Shokri M., Jodat A., Modirshahla N., Behnajady M.A. Photocatalytic degradation of chloramphenicol in an aqueous suspension of silver-doped TiO2 nanoparticles. Environ. Technol., 2012, 34(9), 1161-1166.

https://doi.org/10.1080/09593330.2012.743589

Riabov S.V., Sinelnikov S.I., Opanasenko O.A. Fotokatalitychna fotodehradatsiia orhanichnykh spoluk z vykorystanniam dioksydu tytanu ta tsyklodekstryniv. Polimernyi zhurnal, 2013, 35(2), 126-133.

Palma T.L., Vieira B., Nunes J., Lourenço J.P., Monteiro O.C., Costa M.C. Photodegradation of chloramphenicol and paracetamol using PbS/TiO2 nanocomposites produced by green synthesis. J. Iranian Chem. Soc., 2020, 17, 2013-2031.

https://doi.org/10.1007/s13738-020-01906-1

Kumar A., Khan M., He J., Lo I.M.C. Recent developments and challenges in practical application of visible light et driven TiO2-based heterojunctions for PPCP degradation: A critical review. Water Research., 2020, 170, 115356-115374.

https://doi.org/10.1016/j.watres.2019.115356

Khalyavka T.A., Kapinus E.I., Viktorova T.I., Tsyba N.N. Adsorption and photocatalytic properties of nanodimensional titanium-zinc oxide composites. Theor. Exp. Chem., 2009, 45, 234-238.

https://doi.org/10.1007/s11237-009-9087-4

Shawky M.H., Awad I.A., Mohammed A.M. Preparation and characterization of SnO2 doped TiO2 nanoparticles: Effect of phase changes on the photocatalytic and catalytic activity. Journal of Science: Advanced Materials and Devices., 2019, 4, 400-412.

https://doi.org/10.1016/j.jsamd.2019.06.004

Silva A.L., Muche D.N.F., Dey S., Hotza D., Castro R.H.R. Photocatalytic Nb2O5-doped TiO2 nanoparticles for glazed ceramic tiles. Ceram. Intern., 2016, 42, 5113-5122.

https://doi.org/10.1016/j.ceramint.2015.12.029

Sydorchuk V., Khalameida S., Zazhigalov V., Skubiszewska-Zięba J., Leboda R., Wieczorek-Ciurowa K. Influence of mechanochemical activation in various media on structure of porous and non-porous silicas. Appl. Surf. Sci., 2010, 257, 446-450.

https://doi.org/10.1016/j.apsusc.2010.07.009

Khalameida S., Sydorchuk V., Zazhigalov V., Wieczorek-Ciurowa K., Skubiszewska-Zięba J., Charmas B. The Interaction Between Barium and Titanium Oxides Under Mechanochemical, Hydrothermal and Microwave Treatments and Properties of Prepared Products. Adv. Sci. Engin. Med., 2017, 9(3), 235-246.

https://doi.org/10.1166/asem.2017.1979

Zazhigalov V.A., Sachuk E.V., Kopachevskaya N.S., Bacherikova I.V., Wieczorek-Ciurowa K., Shcherbakov S.N. Mechanochemical synthesis of nanodispersed compounds in the ZnO-MoO3 system. Theor. Exp. Chem., 2016, 52(2), 97-103.

https://doi.org/10.1007/s11237-016-9456-8

Buyanov R.A., Molchanov V.V., Boldyrev V.V. Mechanochemical activation as a tool of increasing catalytic activity. Catal. Tod., 2009, 144(3-4), 212-218.

https://doi.org/10.1016/j.cattod.2009.02.042

Šepelák V., Bégin-Colin S., Caër G.L. Transformations in oxides induced by high-energy ball-milling. Dalt. Trans., 2012, 41, 11927-11948.

https://doi.org/10.1039/c2dt30349c

Asgharzadeh F., Gholami M., Jafari A.J., Kermani M., Asgharnia H., Kalantary R.R. Heterogeneous photocatalytic degradation of methronidazole from aqueous solutions using Fe2O3/TiO2 supported on biochar. Desal. Water Treatm., 2020, 175, 304-315.

https://doi.org/10.5004/dwt.2020.24789

Zazhigalov V.O., Brazhnyk D.V., Sachuk O.V., Kiziun O.V., Bacherikova I.V., Alessandri I., Depero L.E. Photocatalytic properties of zinc oxide prepared by combustion of jellied precursor. Theor. Exp. Chem., 2023, 59(1), 25-31.

https://doi.org/10.1007/s11237-023-09761-w

Yoo H.I., Song C.R., Lee D.K. Electronic carrier mobilities of BaTiO3. J. Europ. Ceram. Soc., 2004, 24, 1259-1263.

https://doi.org/10.1016/S0955-2219(03)00504-1

Giocondi J.L., Rohrer G.S. The influence of the dipolar field effect on the photochemical reactivity of Sr2Nb2O7 and BaTiO3 microcrystals. Top. Catal., 2008, 49(1), 18-23.

https://doi.org/10.1007/s11244-008-9067-2