Vapor-phase oxidation of ethylene glycol methanolic solution into methyl glycolate over CuO-containing catalysts
Article PDF (English)

Ключові слова

метилгліколат, етиленгліколь, мідьвмісні каталізатори, газо-фазне окиснення

Як цитувати

Varvarin, A. M., Levytska, S. I., Mylin, A. M., Zinchenko, O. Y., & Brei, V. V. (2022). Vapor-phase oxidation of ethylene glycol methanolic solution into methyl glycolate over CuO-containing catalysts. Каталіз та нафтохімія, (33), 59-65. https://doi.org/10.15407/kataliz2022.33.059

Анотація

The gas-phase oxidation of ethylene glycol and methanol mixture into methyl glycolate С2H6O2+CH3OH+O2 = C3H6O3+2H2О over synthesized copper-containing catalysts was studied.  Methyl glycolate can be considered as raw material for obtaining biodegradable polyglycolide. The CuO-containing samples were synthesized by impregnation of granular oxide-supports (γ-Al2O3, SiO2 and MgO-ZrO2) with the calculated amount of aqueous solution of Cu(NO3)2·3H2O followed by heat treatment at 400 °C. In such way the supported CuO-MexOy /Al2O3 (Me = Mg, Ti, Cr, Co, Zn, Zr, Ag) samples have been prepared. Catalytic experiments were performed in a stainless-steel flow reactor with a fixed bed of catalyst at 200-270 °C and atmospheric pressure. Oxygen of air was used as an oxidant. The reaction products were analyzed using 13C NMR spectroscopy and gas chromatography. It was found that СuO/Al2O3 catalyst provides ~ 100% ethylene glycol conversion with 56% selectivity towards methyl glycolate at 220 °С. The main by-products are methoxymethanol, 1,1-dimethoxymethane, methyl methoxyacetate, and methyl formate. Use of silica as catalyst support leads to a significant decrease of the ethylene glycol conversion to 57 % for CuO/SiO2, but methyl glycolate selectivity does not change significantly. Promotion of СuO/Al2O3 with MgO increases methyl glycolate yield to 64%. According to the scheme of ethylene glycol sequential oxidation the increase in selectivity for methyl glycolate over CuO-MgO/Al2O3 catalyst is caused by the basic sites that promote intramolecular Cannizzaro rearrangement of the intermediate reaction product  glyoxal hemiacetal to methyl glycolate. It’s found that mixed CuO-CrO3 oxide supported by γ-Al2O3 provides 80 % methyl glycolate selectivity with 95-100% ethylene glycol conversion at 200-210 °C.

https://doi.org/10.15407/kataliz2022.33.059
Article PDF (English)

Посилання

De Clercq R., Makshina E., Sels B.F., Dusselier M. Catalytic gas-phase cyclization of glycolate esters: a novel route toward glycolide-based bioplastics. ChemCatChem. 2018. 10 (24). 5649-5655.

https://doi.org/10.1002/cctc.201801469

Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007. 32. 762-798.

https://doi.org/10.1016/j.progpolymsci.2007.05.017

Lee S.Y., Kim J.C., Lee J.S., Kim Y.G. Carbonylation of formaldehyde over ion exchange resin catalyst. 1. Batch reactor studies. Ind. Eng. Chem. Res. 1993. 32. 253-259.

https://doi.org/10.1021/ie00014a002

Sun Y., Wang H., Shen J., Liu H., Liu Z. Highly effective synthesis of methyl glycolate with heteropolyacids as catalysts. Catal. Com. 2009. 10. 678-681.

https://doi.org/10.1016/j.catcom.2008.11.015

Нe D., Huang W., Liu J., Zhu Q. Condensation of formaldehyde and methyl formate to methyl glycolate and methyl metoxy acetate using heteropolyacids and their salts. Catal. Today.1999. 51. 127-134.

https://doi.org/10.1016/S0920-5861(99)00014-0

Wang K., Yao J., Wang Y., Wang G. Catalytic systems containing p-toluenesulfonic acid for coupling reaction of formaldehyde and methyl formate. J. Natur. Gas Chem. 2007. 16. 286-292.

https://doi.org/10.1016/S1003-9953(07)60061-9

Wang B., Xu Q., Song H., Xu G. Synthesis of methyl glycolate by hydrogenation of dimethyl oxalate over Cu-Ag/SiO2 catalyst. J. Natur. Gas Chem. 2007. 16. 78-80.

https://doi.org/10.1016/S1003-9953(07)60030-9

Zhu J., Cao L., Li C., Zhao G., Zhu T., Hu W., Sun W., Lu Y. Nanoporous Ni3P evolutionarily structured onto a Ni foam for highly selective hydrogenation of dimethyl oxalate to methyl glycolate. ACS Appl. Mater. Interfaces. 2019. 11. 37635-37643.

https://doi.org/10.1021/acsami.9b11703

Yin A., Guo X., Dai W., Fan K. High activity and selectivity of Ag/SiO2 catalyst to hydrogenation of dimethyloxalate. Chem. Commun. 2010. 46. 4348-4350.

https://doi.org/10.1039/c0cc00581a

Zheng J., Lin H., Wang Y.-n., Zheng X., Duan X., Yuan Y. Efficient low-temperature selective hydrogenation of esters on bimetallic Au-Ag/SBA-15 catalyst. J. Catal. 2013. 297. 110-118.

https://doi.org/10.1016/j.jcat.2012.09.023

Hu M., Yan Y., Duan X., Ye L., Zhou J., Lin H., Yuan Y. Effective anchoring of silver nanoparticles onto N-doped carbon with enhanced catalytic performance for the hydrogenation of dimethyl oxalate to methyl glycolate. Catal. Commun. 2017. 100. 148-152.

https://doi.org/10.1016/j.catcom.2017.06.025

Abbas M., Chen Z., Chen J. Shape and size controlled synthesis of Cu nanoparticles-wrapped on RGO nanosheets catalyst and their outstanding stability and catalytic performance in the hydrogenation reaction of dimethyl oxalate. J. Mater. Chem. A. 2018. 6. 19133-19142.

https://doi.org/10.1039/C8TA07371F

Ye R.-P., Lin L., Wang L.-C., Ding D., Zhou Z., Pan P., Xu Z., Liu J., Adidharma H., Radosz M., Fan M., Yao Y.-G. Perspectives on the active sites and catalyst design for the hydrogenation of dimethyl oxalate. ASC Catal. 2020. 10 (8). 4465-4490.

https://doi.org/10.1021/acscatal.9b05477

Кiyoura T., Kogure Y. Synthesis of hydroxyacetic acid and its esters from glyoxal catalysed by multivalent metal ions. Appl. Catal. A. 1997. 156. 97-104.

https://doi.org/10.1016/S0926-860X(96)00414-0

Feng L., Li G., Yan Y., Hou W., Zhang Y., Tang Y. Direct conversion of C6 sugars to methyl glycerate and glycolate in methanol. RSC Adv. 2018. 8. 30163-30170.

https://doi.org/10.1039/C8RA05612A

Ke Y.-H., Qin X.-X., Liu C.-L., Yang R.-Z., Dong W.-S. Oxidative esterification of ethylene glycol in methanol to form methyl glycolate over supported Au catalysts. Catal. Sci. Technol. 2014. 4. 3141-3150.

https://doi.org/10.1039/C4CY00556B

Levytska S.I. Investigation of glucose isomerization into fructose on MgO-ZrO2 catalyst in flow mode. Catalysis and Petrochemistry. 2017. N26. 46-52. [in Ukrainian].

Mylin A.M., Brei V.V. Selective conversion of glycerol-ethanol mixture into ethyl lactate over СеO2/Al2O3-catalyst. Ukr. J. Chem. 2016. 82(2). 79-83. [in Ukrainian].

Sharanda M.E., Mylin A.M., Zinchenko O.Yu., Brei V.V. Vapor-phase oxidation of propylene glycol-methanol mixture to methyl lactate on CeO2/Al2O3 catalyst. Catalysis and Petrochemistry. 2021. N31. 92-97. [in Ukrainian].

https://doi.org/10.15407/kataliz2021.31.092

Brei V.V., Levytska S.I., Prudius S.V. To the question on oxidation at a surface of oxides: TPR oxidation of cyclohexanol. Catalysis and Petrochemistry. 2022. N33. 1-9.

https://doi.org/10.15407/kataliz2022.33.001