To the question of oxidation on the surface of oxides: temperature- programmed oxidation of cyclohexanol
Article PDF

Keywords

heterogeneous catalysis, oxidation on oxides, supported catalysts, mixed oxides

How to Cite

Brei, V. V., Levytska, S. I., & Prudius, S. V. (2022). To the question of oxidation on the surface of oxides: temperature- programmed oxidation of cyclohexanol. Catalysis and Petrochemistry, (33), 1-9. https://doi.org/10.15407/kataliz2022.33.001

Abstract

Temperature-programmed reaction (TPR) method with mass spectrometric control of the products was used to study of cyclohexanol oxidation into cyclohexanone on individual and mixed oxides supported by γ-Al2O3 and silica gel. In the TPR profiles the temperature of a maximum rate of cyclohexanone formation varies from 125°C for MoO3/Al2O3 to 235°C for less active CuO/Al2O3. The catalytic activity of individual oxides decreases in the order MoO3/Al2O3> V2O5/SiO2 > Fe2O3/Al2O3 > Bi2O5/Al2O3 > TiO2/SiO2 ≈ СeO2/Al2O3 > TiO2/Al2O3 > SnO2/Al2O3. As "reactive" oxygen in our TPR experiment was supplied only from oxide lattice, oxide activity is determined by different energy of the surface Me – O bonds. The approach to search for mixed active oxides based on decreasing coordination number of O2- ions is proposed, that confirmed by the example of CuO-WO3/Al2O3 catalyst. The mixed supported oxides, especially CuOCrO3/Al2O3, CuO-MoO3/Al2O3, MoO3-SnO2/Al2O3 and Bi2O3–SnO2/Al2O3, are more active in С6Н12О + 1/2О2 → С6Н10О + Н2О oxidation. The synthesized CuO-CrO3/Al2O3 catalyst provides cyclohexanone formation without side   cyclohexanol dehydration and can be used for the oxidation of ethylene glycol – methanol mixture into methyl glycolate. CuO-Cr2O3/Al2O3 with a spinel structure of CuCr2O4 ([CuO4] 6− tetrahedra, Cu2+ sp3-hybridization) is more active in cyclohexanol oxidation than CuO/Al2O3 with flat [CuO4] 6−squares, Cu2+ dsp2-hybridization. This is explained by the lower energy of Cu-O bonds at sp3-hybridization of Cu2+ ions.

https://doi.org/10.15407/kataliz2022.33.001
Article PDF

References

Wolkenstein Th. Electronic processes on the surface of semiconductors during chemisorption. Nauka. Moskow. 1987. 432. [in Russian].

Centi G., Cavani F., Trifiro F. Selective oxidation by heterogeneous catalysis. Kluwer, Academic Plemiun publishers. New York. 2001.

https://doi.org/10.1007/978-1-4615-4175-2

Haber J. 14.11.1 Fundamentals of Hydrocarbon Oxidation. Handbook of Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA. 2008.

https://doi.org/10.1002/9783527610044.hetcat0170

Lee E.L., Wachs I.E. Use of Oxide Ligands in Designing Catalytic Active Sites. in Design of Heterogeneous Catalysts Ed. Ozkan U.S. WILEY-VCH Verlag GmbH & Co. KGaA. 2009. p. 1-24

https://doi.org/10.1002/9783527625321.ch1

Panov G.I., Starokon E.V., Ivanov D.P., Pirutko L.V., Kharitonov A.S. Active and super active oxygen on metals in comparison with metal oxides. Catalysis Rev. 2021. 63(4) 597-638.

https://doi.org/10.1080/01614940.2020.1778389

Brei V.V., Mylin A.M. Oxidation of alcohols over cerium-oxide catalyst: correlation between the activation energy of the reaction and the chemical shift δ (R13 COH). Ukrainian chem. J. 2019.85(8). 66-72.

https://doi.org/10.33609/0041-6045.85.8.2019.66-72

Brei V.V., Mylin A.M. Dehydrogenation of alcohols on copper catalyst: correlation between activation energy of the reaction and the chemical shift δ (R17OH). Ukrainian chem. J. 2017. 83(8). 105-110.

Popovsky V.V., Boreskov G.K., Muzykantov V.S., Sazonov V.A., Shubnikov S.G. Oxygen binding energy and catalytic activity of some oxides. Kinetics and catalysis. 1969. 10(4). 787-795. [in Russian].

Badlani M., Wachs I.E. Methanol: a ''smart" chemical probe molecule. Catal. Letters.2001. 75. 137-149.

https://doi.org/10.1023/A:1016715520904

Wachs I.E. Number of surface sites and turnover frequencies for oxide catalysts. J. Catal. 2022. 405. 462-472.

https://doi.org/10.1016/j.jcat.2021.12.032

Polster C.S., Nair H., Baertsch C.D. Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst. J. Catal. 2009. 266. 308-319.

https://doi.org/10.1016/j.jcat.2009.06.021

Xie X., Liub M., Wang C., Chen L., Xu J., Cheng Y., Dong H., Lu F., Wang W.-H., Liu H., Wang W. Efficient photo-degradation of dyes using CuWO4 nanoparticles with electron sacrificial agents: A combination of experimental and theoretical exploration. RSC Advances, 2016. 6. 953-959.

https://doi.org/10.1039/C5RA18788E

Gray H.B. Electrons and chemical bonding. W.A. Beniamin, Inc., New York, Amsterdam, 1965.

Varvarin A.M., Levytska S.I., Mylin A.M., Zinchenko O.Yu., Brei V.V. Vapor-phase oxidation of ethylene glycol methanolic solution into methyl glycolate over Cu-containing catalysts. Catalysis and Petrochemistry. 2022. N 33. 59-65.

https://doi.org/10.15407/kataliz2022.33.059