Researches on heterogeneous acid-base catalysis in Institute for sorption and problems of endoecology of the National Academy of Sciences of Ukraine
Article PDF (Українська)

Keywords

heterogeneous catalysis, solid acids, bioethanol, glicerol, alkyl lactates, lactide, propylene oxide, butanol

How to Cite

Brei, V. V. (2023). Researches on heterogeneous acid-base catalysis in Institute for sorption and problems of endoecology of the National Academy of Sciences of Ukraine. Catalysis and Petrochemistry, (34), 31-49. https://doi.org/10.15407/kataliz2023.34.031

Abstract

In chronological order, the reaseach results of Department of heterogeneous acid-base catalysis at Institute for sorption and endoecology problems in 2003-2023 are described. It relates to the synthesis, study and application of solid superacids WO3/ZrO2, WO3/ZrO2-SiO2, ZrO2-SiO2-Al2O3, ZrO2-SiO2-SnO2, as catalysts, in vacuum gas oil cracking, alkylation of isobutane with isobutanol, acylation toluene, oligomerization of tetrohydrofuran, acylation of methyl tert-butyl ether and other. Some study deals with a search of the correlations between of  acid site strength of a catalyst and its activity, in particular, in dehydration reaction of C2-C4 alcohols, and the correlations between ability of primary and secondary alcohols to dehydrogenation and oxidation and their chemical shifts δ (R17OH) and δ (R13СОH ). For the first time, the values of Hammett's acidity function have been measured at elevated (up to 200 °C) temperatures for solid acids. In particular, for H-Y faujasite, H0 reaches superacidic value H0 at 160 °С.

Since 2010, the main focus has been on the catalytic conversion of renewable raw materials, mainly bioalcohols (ethanol, glycerol) and C6 carbohydrates, into important products of organic synthesis (ethyl acetate, 1,1 diethoxyethane, n-butanol, propylene glycol, alkyl lactates, lactide, glycolide). In cooperation with “Techinservice Manufacturing Group”, new processes for obtaining ethyl acetate, 1,1 diethoxyethane, n-butanol from bioethanol and racemic lactide from glycerol were developed. Also, new technologies for obtaining propylene oxide from propylene and hydrogen peroxide (НРPОа-process), vapor phase hydrogenation of the pyrolysis C4-5 fraction, and direct high-temperature chlorination of ethylene to vinyl chloride have been developed for Kalush “Karpatnaftochim” plant. The HHPOa installation (2000 t/y) has been started at “Karpatnaftochim” in 2020.

https://doi.org/10.15407/kataliz2023.34.031
Article PDF (Українська)

References

Melezhyk O.V., Prudius S.V., Brei V.V. Sol-gel polymer-template synthesis of mesoporous WO3/ZrO2. Microporous Mesoporous Mater., 2001, 49(1-3), 39-44.

https://doi.org/10.1016/S1387-1811(01)00397-3

Oranskaya E.I., Melezhik O.V., Prudius S.V., Shapiro I.G., Brei V.V. Formation of mesoporous structure of WO3/ZrO2 and Al2O3/ZrO2 systems using polyvinyl alcohol as a template. Ukrainian chem. J. 2003, 69(7), 21-26. [in Russian].

Brei V.V., Melezhyk O.V., Prudius S.V., Tel'biz G.M., Oranska O.I.. Study of acid site structure on WO3/ZrO2 surface. Adsorpt. Sci. Technol. 2005. 23(2). 109-114.

https://doi.org/10.1260/0263617054037754

Shystka D.V., Oranskaya E.I., Shapiro I.G., Gornikov Yu.I., Brei V.V. Phase composition and catalytic activity of WO3/ZrO2 doped with groups II-VI elements. Ukr. chem. J., 2006, 72(9), 15-20. [in Russian].

Brei V.V., Melezhyk A.V., Prudius S.V., Oranskaya E.I. Study of surface-bulk distribution of tungsten in WO3/ZrO2 oxides prepared by different methods. Polish J. Chem., 2009, 83(4), 537-546.

Brei V.V., Melezhyk O.V., Prudius S.V., Levchuk N.N., Patrylak K.I. Superacid WOx/ZrO2 catalysts for isomerization of n-hexane and for nitration of benzene. Stud. Surf. Sci. Catal., 2002, 143, 387-395.

https://doi.org/10.1016/S0167-2991(00)80679-5

Brei V.V., Prudius S.V., Melezyk O.V. Vapour-phase nitration of benzene over superacid WO3/ZrO2 catalysts. Appl. Catal. A, 2003, 239, 11-16.

https://doi.org/10.1016/S0926-860X(02)00383-6

Brei V.V., Shistka D.V., Prudius S.V. Benzoylation of anisole and toluene on superacid catalyst WO3/ZrO2 in flowing regime. Catalysis and Petrochemistry, 2007, 15, 67-69. [in Russian].

Brei V.V., Bodul N.S., Dordij N.K. Oligomerization of tetrahydrofuran over superacidic WO3/ZrO2-catalyst. Catalysis and Petrochemistry, 2008, 16, 17-19. [in Russian].

Brei V.V., Bodul N.S., Prudius S.V., Shistka D.V. Oligomerization of tetrahydrofuran on solid acid catalysts. Chemical Industry of Ukraine, 2010, 3, 19-21. [in Russian].

Brei V.V., Melezhyk A.V., Prudius S.V., Bodul N.S., Mutovkin P.A. Synthesis of mesoporous ZrO2-SiO2 and WO3/ZrO2-SiO2 solid acids. Annales Universitatis Maria Curie-Sklodowska Lublin: Chemia, Sectio AA, 2009, 64, 86-95.

https://doi.org/10.2478/v10063-008-0008-5

Prudius S.V., Melezhyk A.V., Brei V.V. Synthesis and catalytic study of mesoporous WO3-ZrO2-SiO2 solid acid. Stud. Surf. Sci. Catal., 2010, 175, 233-236.

https://doi.org/10.1016/S0167-2991(10)75031-X

Brei V.V. Superacids based on zirconium dioxide. Theor. Exp. Chem., 2005, 41(3), 165-175.

https://doi.org/10.1007/s11237-005-0035-7

Brei V.V., Sharanda М.Е., Kril А.А., Strelko V.V. Transformation of a mixture of isobutane with isobutanol into branched high-octane C8 hydrocarbons on acid catalysts. Dopov. Nac. akad. nauk Ukr., 2008, 3, 128-132. [in Russian].

Brei V., Kril A., Sharanda M. Transformation of isobutanol-isobutane mixture into branched C8 hydrocarbons over acid catalysts. Annales Universitatis Maria Curie-Sklodowska Lublin: Chemia, Sectio AA, 2007, 112(3), 30-34.

Kril А.А., Prudius S.V., Brei V.V. Study of conversion of isobutane-isobutanol mixture into hydrocarbons i-С8 over acid catalysts. Catalysis and Petrochemistry, 2009, 17, 1-3. [in Russian].

Kril A.A., Brei V.V. Synthesis of branched C8 hydrocarbons by the transformation of isobutanol-isobutane mixture over acid catalysts. Chem. Engineering Transactions, 2009, 17, 193-196.

Brei V.V., Inshina O.I., Khomenko K.M. Cracking catalysts. Zirconium silicates as an alternative to aluminum silicates. Chemical Industry of Ukraine, 2015, 128(3), 33-37. [in Ukrainian].

Patent 112153 Ukraine. Brei V.V., Prudius S.V., Inshina O.I., Khomenko K.M. The method of obtaining a zirconium silicate catalyst for cracking vacuum gas oil. 2016. [in Ukrainian].

Brei V.V., Inshina O.I., Prudius S.V., Khomenko K.M., Popov V.I. Study of vacuum gas oil cracking over high-acidic mixed ZrO2SiO2 oxides. Norwegian Journal of Development of the International Science, 2018, 16(2), 13-19.

Inshina E.I., Brei V.V. Acylation of methyl tert-butyl ether by acetic anhydride on acid Amberlist 15 and ZrO2-SiO2 catalysts. Theor. Exp. Chem., 2013, 49(5), 305-309.

https://doi.org/10.1007/s11237-013-9332-8

Inshina O., Sharanda M., Brei V. Transetherification of methyl tert-butyl ether with ethanol over acidic ZrO2SiO2 oxide and Dowex DR2030 sulphoresin catalyst. Catalysis and Petrochemistry, 2014, 23, 5-8.

Levytska S.I., Inshyna O.I., Brei V.V. Transacetalization of 1,1-diethoxyethane by nbutanol on acidic catalysts. Catalysis and Petrochemistry, 23, 5-8. [in Ukrainian].

Inshina O.I., Telbiz G.M., Brei V.V. New superacid ZrO2-SiO2-Al2O3 oxide and its activity in the oligomerization of tetrahydrofuran. Dopov. Nac. akad. nauk Ukr., 2015, 10, 49-54. [in Ukrainian].

https://doi.org/10.15407/dopovidi2015.10.049

Inshina O.I., Korduban A.M., Telbiz G.M., Brei V.V. Synthesis and study of superacid ZrO2SiO2Al2O3 mixed oxide. Adsorpt. Sci. Technol., 2017, 35(5-6), 339-447.

https://doi.org/10.1177/0263617417694887

Prudius S.V., Hes N.L., Trachevskiy V.V., Brei V.V. Synthesis and study of new superacid ZrO2-SiO2-SnO2 oxide. Dopov. Nac. akad. nauk Ukr., 2019, 11, 73-80. [in Ukrainian].

https://doi.org/10.15407/dopovidi2019.11.073

Prudius S.V., Hes N.L., Trachevskiy V.V., Khyzhun O.Yu., Brei V.V. Superacid ZrO2SiO2SnO2 mixed oxide: synthesis and study. Chem. Chem. Technol., 2021, 15(3), 336-342.

https://doi.org/10.23939/chcht15.03.336

Inshina O.I., Prudius S.V., Brei V.V. Superacid L-sites on the surface of ternary ZrO2-SiO2-Al2O3 and ZrO2-SiO2-SnO2 oxides. Theor. Exp. Chem., 2022, 58(4), 269-275.

https://doi.org/10.1007/s11237-022-09744-3

Brei V.V., Khomenko K.N., Shystka D.V. A correlation between Hammett acidity of catalysts and their activity in temperature-programmed reaction of cumene dealkylation. React. Kinet. Catal. Lett., 2004, 81(1), 197-202.

https://doi.org/10.1023/B:REAC.0000016535.01531.95

Brei V.V., Shistka D.V., Grebenyuk A.G. Symbatic Relationship between proton affinity and ease of dehydration and dealkylation of alcohol and alkylbenzene molecules on acid catalysts. Theor. Exp. Chem., 2004, 40(3), 192-197. [in Russian].

https://doi.org/10.1023/B:THEC.0000036217.22900.ed

Brei V.V. Correlation between the strength of the basic sites of catalysts and their activity in the decomposition of 2-methyl-3-butyn-2-ol as a test reaction. Theor. Exp. Chem., 2008, 44(5), 320-324. [in Russian].

https://doi.org/10.1007/s11237-008-9040-y

Brei V.V. Ratio of the equilibrium and kinetic acidities of solid catalysts. Theor. Exp. Chem., 2009, 45(3), 186-188. [in Russian].

https://doi.org/10.1007/s11237-009-9082-9

Brei V.V., Prudius S.V., Lozhechnik I.I., Oranskaya E.I., Shistka D.V. Mixed amphoteric oxide ZrO2-Al2O3 as catalyst for the conversion of 2-methyl-3-butyn-2-ol. Theor. Exp. Chem., 2011, 47(3), 188-191. [in Russian].

https://doi.org/10.1007/s11237-011-9202-1

Brei V.V., Shistka D.V., Telbiz G.M. Temperature dependence of Hammett acidity for HYfaujasite. Polish J. Chem., 2008, 82(1-2), 179-182.

Inshina E.I., Shistka D.V., Telbiz G.M., Brei V.V. Hammett function values for mixed ZrO2SiO2 oxide at elevated temperatures. Chem. Phys. Technol. Surface, 2012, 3(4), 395-400.

Brei V.V., Shistka D.V., Levitskaya S.I. Variation in the strength of base sites in the system La2O3-ZrO2 in the range 25-200 °С. Theor. Exp. Chem., 2009, 45(2), 122-124.

https://doi.org/10.1007/s11237-009-9073-x

Brei V.V., Mylin A.M. Dehydrogenation of alcohols on a copper catalyst: correlation between reaction activation energy and δ (R17OH) chemical shift. Ukrainian chem. J., 2017, 83(8), 105-110. [in Ukrainian].

Brei V.V., Mylin A.M. Oxidation of alcohols on a cerium oxide catalyst: correlation between the activation energy of the reaction and δ (R13СОH) chemical shift. Ukrainian chem. J., 2019, 85(8), 66-72. [in Ukrainian].

https://doi.org/10.33609/0041-6045.85.8.2019.66-72

Brei V.V., Melezhyk A.V., Shistka D.V. Transesterification of rapeseed oil with ethanol on heterogeneous acid catalysts. Catalysis and Petrochemistry, 2008, 16, 9-16. [in Russian].

Brei V.V., Melezhyk O.V., Starukh G.M., Oranskaya E.I., Mutovkin P.A. Organic precursor synthesis of Al-Mg mixed oxides and hydrotalcites. Microporous Mesoporous Mater., 2008, 113(1-3), 411-417.

https://doi.org/10.1016/j.micromeso.2007.11.040

Levitskaya S.I., Shistka D.V., Brei V.V. Ethanolysis of rapessed oil on modified silica samples with surface -SO3H-groups. Catalysis and Petrochemistry, 2012, 20, 1-5. [in Ukrainian].

Levitskaya S.I., Shistka D.V., Brei V.V. Ethanolization of rapeseed oil on MgO-ZrO2 catalyst with the participation of n-butylamine. Catalysis and Petrochemistry, 2012, 21, 35-38. [in Russian].

Starukh G.M., Levitskaya S.I., Mutovkin P.O., Brei V.V. Glycerolysis of rapeseed oil on MgO-containing catalysts. Catalysis and Petrochemistry, 2009, 17, 4-7. [in Ukrainian].

Starukh G.M., Levitskaya S.I., Shistka D.V., Brei V.V. Transesterification of Rapeseed Oil by Glycerol over Basic Oxides. Him. Fiz. Tehnol. Poverhni, 2010, 1(2), 194-199. [in Russian].

Brei V.V., Starukh G.M., Levytska S.I., Shistka D.V. Study of a continuous process for glycerolysis of rapeseed oil with the solid base catalysts. Chem. Chem. Technol., 2012, 6(1), 89-94.

https://doi.org/10.23939/chcht06.01.089

Sharanda M.E., Prudius S.V., Brei V.V. One-stage synthesis of ethyl acetate from ethanol on Cu/ZnO-ZrO2-Al2O3 catalyst. Ukrainian chem. J., 2008, 74(12), 78-82. [in Russian].

Brei V.V., Shchutskyi I.V. Bioethanol in Ukraine. Visn. Nac. Acad. Nauk Ukr., 2016, 6, 71-76. [in Ukrainian].

https://doi.org/10.15407/visn2016.06.071

Brei V.V., Sharanda M.E., Prudius S.V., Bondarenko E.A. Synthesis of acetic acid from ethanol-water mixture over Cu/ZnO-ZrO2-Al2O3 catalyst. Appl.Catal. A, 2013, 458, 196-200.

https://doi.org/10.1016/j.apcata.2013.03.038

Fesenko A.V., Datsyuk Yu.I., Prudius S.V., Sontsev V.M., Brei V.V. Direct synthesis of butylbutyrate from n-butanol on Cu-Pd/ZnO-ZrO2-Al2O3 catalyst. Ukrainian chem. J., 2010, 76(7), 40-43. [in Russian].

Varvarin A.M., Khomenko K.N., Brei V.V. Catalytic activity of H-ZSM-5 and H-ZSM-5/Al-MCM-41 in the conversion of ethanol to gasoline fraction hydrocarbons. Theor. Exp. Chem., 2011, 47, 36-40.

https://doi.org/10.1007/s11237-011-9181-2

Varvarin A.M., Khomenko K.M., Brei V.V. Сonversion of n-butanol to hydrocarbons over H-ZSM-5, H-ZSM-11, H-L and H-Y zeolites. Fuel, 2013, 106, 617-620.

https://doi.org/10.1016/j.fuel.2012.10.032

Sontsev V.M., Brei V.V. Conversion of propylene glycol-acetone mixture into 2,2,4-trimethyl-1,3-dioxolane over Dowex DR-2030 and ZrO2-SiO2 acid catalysts. Chem.Phys.Techn.Surface, 2014, 5(1), 42-46. [in Russian].

Bondarenko E.A., Sharanda M.E., Brei V.V. Synthesis of propylene glycol acetacetal over solid acid catalysts. Chem. Phys. Techn. Surface, 2015, 6(4), 520-526. [in Ukrainian].

https://doi.org/10.15407/hftp06.04.520

Sharanda M.E., Sontsev V.M., Prudius S.V., Inshina O.I., Brei V.V. Transformation of glycerol to 1,2-propanediol over the bifunctional catalysts. Chem. Phys. Techn. Surface, 2012, 3(1), 61-65. [in Russian].

Sharanda M., Sontsev V., Bondarenko E., Brei V. Two-stage conversion of glycerol into propylene glycol over Cu/Al2O3 catalyst. Chem. Chem. Technol., 2015, 9(2), 89-94.

https://doi.org/10.23939/chcht09.02.171

Brei V.V., Sontsev V.M. Esterification of acetic and acrylic acids with hydroxyacetone over sulpho-acidic Dowex DR-2030-catalyst. Catalysis and Petrochemistry, 2012, 21, 30-34. [in Russian].

Prudius S.V., Sontsev V.M., Brei V.V. Hydroxyacetone oxidation with hydrogen peroxide over acid catalysts. Him. Fiz. Tehnol. Poverhni., 2015, 6(4), 498-503. [in Russian].

https://doi.org/10.15407/hftp06.04.498

Brei V.V., Varvarin A.M., Prudius S.V. Selective conversion of tetrahydrofurfuryl alcohol into δ-valerolactone on Cu/ZnO-Al2O3 catalyst. Catalysis and Petrochemistry, 2013, 22, 10-13. [in Russian].

Brei V.V., Varvarin A.M., Prudius S.V. Amidation of δ-valerolactone on copper-containing catalysts. Catalysis and Petrochemistry, 2014, 23, 1-4. [in Ukrainian].

Brei V.V., Varvarin A.M., Prudius S.V. Selective conversion of tetrahydrofurfuryl alcohol into δ-valerolactone and its amidation to δ-valerolactam over Сu/ZnO-Al2O3 catalyst. Chemical Industry of Ukraine, 2016, 1, 7-12. [in Ukrainian].

https://doi.org/10.15407/hftp07.04.395

Brei V.V., Varvarin A.M., Prudius S.V. One-pot synthesis of δ-valerolactone from tetrahydrofurfuryl alcohol and δ-valerolactone amidation over Сu/ZnO-Al2O3 catalyst. Chem. Phys. Technol. Surface, 2016, 7(4), 395-404.

https://doi.org/10.15407/hftp07.04.395

Brei V.V., Levytska S.I., Shistka D.V. Selective conversion of dihydroxyacetone - ethanol mixture to ethyl lactate over amphoteric TiO2-ZrO2 catalyst. Dopov. Nac. akad. nauk Ukr., 2013, 5, 128-133. [in Russian].

Mylin A.N., Levytska S.I., Sharanda M.E., Brei V.V. Selective conversion of dihydroxyacetone-ethanol mixture into ethyl lactate over amphoteric ZrO2-TiO2 catalyst. Catal.Comm., 2014, 47, 36-39.

https://doi.org/10.1016/j.catcom.2014.01.004

Brei V.V., Mylin A.N. Activity and selectivity of an amphoteric ZrO2-TiO2 catalyst in the conversion of dihydroxyacetone into ethyl lactate and lactic acid. Theor. Exp. Chem., 2015, 50(6), 384-387. [in Russian].

https://doi.org/10.1007/s11237-015-9392-z

Mylin A.M., Brei V.V. Selective conversion of an ethanolic solution of glycerol into ethyl lactate on СеO2/Al2O3 catalyst. Ukrainian chem. J., 2016, 82(2), 79-83. [in Ukrainian].

Prudius S.V., Hes N.L., Brei V.V. Conversion of D-fructose into ethyl lactate over a supported SnO2ZnO/Al2O3 catalyst. Colloids Interfaces, 2019, 3(1), 16-18.

https://doi.org/10.3390/colloids3010016

Prudius S.V., Hes N.L., Mylin A.M., Brei V.V. Conversion of fructose into methyl lactate over SnO2/Al2O3 catalyst in flow regime. Catalysis and Petrochemistry, 2020, 30, 43-47. [in Ukrainian].

https://doi.org/10.15407/kataliz2020.30.043

Prudius S.V., Hes N.L., Mylin A.M., Brei V.V. Continuous conversion of fructose into methyl lactate over SnO2-ZnO/Al2O3 catalyst. Journal of Chemistry and Technologies, 2021, 29(1), 1-9.

https://doi.org/10.3390/colloids3010016

Patent а 2021 04096 Ukraine. Hes N.L., Prudius S.V., Brei V.V. The method of obtaining methyl lactate from fructose. 2021. [in Ukrainian].

Varvarin A.M., Levytska S.I., Brei V.V. Vapor phase condensation of ethyl lactate into lactide over SnO2/SiO2 catalyst. Dopov. Nac. akad. nauk Ukr., 2018, 1, 73-79. [in Ukrainian].

https://doi.org/10.15407/dopovidi2018.01.073

Vаrvarin А.М., Levytska S.І., Mylin А.М., Brei V.V. Conversion of ethyllactate into lactide over acid SnO2/SiO2 catalyst. Catalysis and Petrochemistry, 2018, 27, 19-24. [in Ukrainian].

Varvarin A.M., Levytska S.I., Glushchuk Ya.R., Brei V.V. Vapor-phase synthesis of lactide from ethyl lactate over TiO2/SiO2 catalyst. Ukrainian chem. J., 2019, 85(7), 31-37. [in Ukrainian].

https://doi.org/10.33609/0041-6045.85.7.2019.31-37

Varvarin A.M., Levytska S.I., Brei V.V. Vapour-phase conversion of methyl lactate into lactide over TiO2/SiO2 catalyst at the lowered pressure. Catalysis and Petrochemistry, 2020, 30, 38-42. [in Ukrainian].

https://doi.org/10.15407/kataliz2020.30.038

Patent 139671 Ukraine. Brei V.V., Varvarin A.M., Levytska S.I., Glushchuk Ya.R., Mylin A.M. The method of obtaining lactide through the vapor phase condensation of ethyl lactate. 2020. [in Ukrainian].

Patent 141885 Ukraine. Brei V.V., Shchutskyi I.V., Varvarin A.M., Levytska S.I., Zienchenko O.Yu. The method of obtaining lactide from alkyl lactate. 2020. [in Ukrainian].

Brei V.V., Levytska S.I., Prudius S.V. To the question of oxidation on the surface of oxides: temperature-programmed oxidation of cyclohexanol. Catalysis and Petrochemistry, 2022, 33, 1-9. [in Ukrainian].

https://doi.org/10.15407/kataliz2022.33.001

Varvarin A.M., Levytska S.I., Mylin A.M., Zinchenko O.Yu., Brei V.V. Vapor-phase oxidation of ethylene glycol methanolic solution into methyl glycolate over Cu-containing catalysts. Catalysis and Petrochemistry, 2022, 33, 59-65.

https://doi.org/10.15407/kataliz2022.33.059

Brei V.V., Shchutskyi I.V., Pidsadyuk I.M. New domestic HPPOa technology for propylene oxide production. Visn. Nac. Acad. Nauk Ukr., 2022, 1, 63-68. [in Ukrainian].

Shchutskyi I.V., Brei V.V., Sharanda M.E., Kas'kov Y.V., Dagaev О.Yu., Pidsadyuk I.M., Mylin A.M., Mykhailenko Y.O., Zienchenko O.Yu. New HPPOa technology for propylene oxide production: from laboratory reactor to commercial pilot installation. Catalysis and Petrochemistry, 2021, 32, 1-8. [in Ukrainian].

https://doi.org/10.15407/kataliz2021.32.001

Sharanda M.E., Mylin A.M., Zinchenko O.Yu., Brei V.V. Hydrogenation of C'5 olefins in vapor phase on the copper oxide catalyst. Catalysis and Petrochemistry, 2021, 32, 93-98. [in Ukrainian].

https://doi.org/10.15407/kataliz2021.32.093