Development of oxidation heterogeneous catalysis in Institute for Sorption and Problems of Endoecology NAS of Ukraine
Article PDF (Українська)

Keywords

heterogeneous oxidation catalysis, photocatalysis, catalysts, paraffin hydrocarbons, ethanol

How to Cite

Zazhigalov, V. O. (2023). Development of oxidation heterogeneous catalysis in Institute for Sorption and Problems of Endoecology NAS of Ukraine. Catalysis and Petrochemistry, (34), 1-30. https://doi.org/10.15407/kataliz2023.34.001

Abstract

In this publication the results of heterogeneous catalytic processes of different nature compounds oxidation in productive and ecological catalysis obtained in Institute for Sorption and Problems of Endoecology NAS of Ukraine during last 30-years are summarized. The problems of effective catalysts synthesis for these reactions and development of nontraditional preparation methods to catalysts technology are considered. The results obtained in investigation of saturated hydrocarbons (methane, ethane, propane, butane, pentane) partial oxidation in valuable products (formaldehyde, ethylene, propylene, maleic and phthalic anhydrides) are presented. The mechanisms of paraffins hydrocarbons transformation are presented. New approaches to effective catalysts preparation, which based on alternative methods (mechanochemistry, sonochemistry, barothernal synthesis, ionic implantation) using, for these processes are shown and the comparison of results obtained on synthesis catalysts with known literature data was realized. It was established that in most cases the catalysts prepared by us are more effective in different processes that known analogous catalysts.

New schemes of maleic anhydride production in excess of n-butane in reaction mixture and phthalic anhydride from n-pentane with two catalysts in catalytuic bed were proposed.

The process of ethanol oxidation to acetaldehyde was studied and very effective catalysts for this process realization were proposed.

The synthesis of the catalysts for environment protection (total oxidation of H2S, CO and CO in hydrogen excess) is considered and it was shown that the developed catalysts don’t give in activity foreign analogues. The results obtained at catalysts preparation for photocatalytic degradation of different organic compounds, including herbicides and medical substances, in water medium are presented. The positive effects of the catalysts synthesis by nontradional methods (mechanochemistry and sonochemistry) for effective photocatalysts preparation are shown. The new perspective directions of catalytic oxidation processes and methods of the catalysts preparations are presented.

https://doi.org/10.15407/kataliz2023.34.001
Article PDF (Українська)

References

Stavitskaya S.S., Strelko V.V. Kataliticheskie svoistva uglerodnykh enterosorbentov. Тeoretical and Experimantal Chemistry, 1995, 31(2), 76-80. [in Russian].

Serguchev Yu.A., Stetsuyk G.A., Strelko V.V., Tomilenko E.I. Kataliticheskie svoistva aktivnych uglej v reaktsiyakh zhidkofaznogo khloririvaniya toluola. Тeoretical and Experimantal Chemistry, 1996, 32(6), 358-361. [in Russian].

https://doi.org/10.1007/BF01374123

Stavitskaya S.S., Tarkovskaya I.A., Petrenko T.P. Osnovnye factory opredelyayustchie kataliticheskie scoistva aktivnych uglej. Тeoretical and Experimantal Chemistry, 1996, 32(6), 336-344. [in Russian].

https://doi.org/10.1007/BF01374119

Stavitskaya S.S. Kislotnyj kataliz okislennymi uglyami razlichnogo proiskhozhdeniya. Ukrainskyy khimichnyi Zhurnal, 1997, 63(7), 27-36. [in Russian].

Mikhalovsky S.V., Zaitsev Y.P. Catalytic properties of activated carbons. 1. Gas-phase oxidation of hydrogen sulphide. Carbon, 1997, 35(9), 1367-1374.

https://doi.org/10.1016/S0008-6223(97)00104-8

Vlasenko V.M. Ekologicheskij kataliz. - Kiev: Naukova dumka, 2010. - 237 p.

Brazhnyk D.V., Zaitsev Yu.P., Bacherikova I.V., Zazhigalov V.A., Stoch J., Kowal A. Oxidation of H2S on activated carbon KAU and influence of the surface state. Applied Catalysis B: Environmental, 2007, 70(1-4), 557-566.

https://doi.org/10.1016/j.apcatb.2005.12.028

Nhut J.M., Nguen P., Pham-Huu C., Kellere N., Ledoux M.J. Carbon nanotubes as nanosized reactor for the selective oxidation of H2S into elemental sulfur. Catalysis Today, 2004, 91/92, 91-97.

https://doi.org/10.1016/j.cattod.2004.03.015

Bagreev A., Bandosz T.J. A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic impregneted activated carbon. Industrial Engeneering Chemical Researches, 2002, 41(4), 672-679.

https://doi.org/10.1021/ie010599r

Brazhnyk D.V., Bacherikova I.V., Zazhigalov V.A., Kowal A. Modification of activated carbon KAU surface properties. Chemistry Physics and Technology of Surface, 2011, 2(1), 41-52.

Gerasimyuk I.P., Zazzhigalov V.A., Lapko V.F., Lysenko F.O., Tarasenko Yu.O. Naneseni na aktyvne vugillya Pd- I Pd, Au - katalizatory v reaktsiyakh okisnennya vodnyu ta mono oksydu vygletsyu. Khimiya, Fizika ta Tekhnologiya Poverkhni: monograph. - Kyiv: KМ «Akademiya», 2004, 10, 151-155. [in Ukrainian].

Zazhigalov V.A., Lapko V.F., Bacherikova I.V., Zaitsev Yu.P., Gerasimyuk I.P. Kataliticheskaya aktivnost' nanesennykh na aktivnye ugli Pd- I Pd-Au katalizatorov v reaktsii okisleniya monooksida ugleroda. Ukrinskyy Khimicnyy Zhurnal, 2011, 77(3-4), 92-98. [in Russian].

Zaitsev Yu.P., Brazhnyk D.V., Zazhigalov V.A. Vliyanie metoda prigotovleniya yf razmer chastits I kataliticheskie svoistva Co/C katalizatora v reaktsii okisleniya CO. Nanosistemy, nanomaterialy, nanotekhnologii, 2004, 2(4), 1307-1312. [in Russian].

Grigoryan R.R., Vartikyan L.A., Garibyan T.A., Zazhigalov V.A. Ispol'zovanie prirodnykh ceolitov dkya sozdaniya katalizatorov neitralizacii gazovykh vybrosov. 1. Glubokoe okislenie metanola. Energotekhnologii i resursosberezhenie, 2008, 5, 24-30. [in Russian].

Brazhnyk D.V., Zazhigalov V.A., Grigoryan R.R., Vartikyan L.A., Garibyan T.A. Ispol'zovanie prirodnykh ceolitov dkya sozdaniya katalizatorov neitralizacii gazovykh vybrosov. 2. Okislenie CO. Energotekhnologii I resursosberezhenie, 2009, 1, 27-32. [in Russian].

Brazhnyk D.V., Zazhigalov V.A., Grigoryan R.R., Vartikyan L.A., Garibyan T.A. Ispol'zovanie prirodnykh ceolitov dkya sozdaniya katalizatorov neitralizacii gazovykh vybrosov. 3. Okislenie metana. Energotekhnologii I resursosberezhenie, 2009, 2, 34-38. [in Russian].

Hutchings G.J., Scurrell M.S. Designing oxidation catalysts. Are we getting better? CATTECH, 2003, 7(3), 90-103.

https://doi.org/10.1023/A:1023801108121

Wang C.B., Tang C.WQ., Tsai H.C., Chien S.H. Characterization and catalytic oxidation of carbon monoxide over supported cobalt catalysts. Catalysis Letters, 2006, 107(3-4), 223-230.

https://doi.org/10.1007/s10562-005-0002-x

Yoshida H., Nakajima T., Yazawa Y., Hattori T. Support effect on methane combustion over palladium catalysts. Applied Catalysis, B: Environmental, 2007, 71(1), 70-79.

https://doi.org/10.1016/j.apcatb.2006.08.010

Shi C.K., Yang L.F., Wang Z.C., He X.E., Cai J.X., Li G., Wang X.S. Promotion effects of ZrO2 on the Pd/HZSM-5 catalyst for low-temperature catalytic combustion of methane. Applied Catalysis, A: General, 2003, 243(2), 379-388.

https://doi.org/10.1016/S0926-860X(02)00594-X

Romanova I.V., Farbun I.A., Khainakov S.A., Kirillov S.A., Zazhigalov V.A. Issledovanie kataliticheskikh svoistv materialov na osnove oksidov perekhodnykh metallov i ceriya. Dopovidi NAN Ukrainy (Reports of Nat. Acad. Sci. Ukraine), 2008, 10, 154-159. [in Russian].

Zazhigalov V.A. Effect of mechanochemical treatment on the kinetic properties of V, Mo, Ti-containing oxide systems. Theoretical and Experimental Chemistry, 2013, 49(3), 178-184.

https://doi.org/10.1007/s11237-013-9312-z

Augouropoulos G., Manzoli M., Boccuzzi F., Tabakova T., Papavasiliou J., Ionnides T., Idakiev V. Catalytic performance and characterization of Au/doped-ceria catalysts for the preferencial CO oxidation reaction. Journal of Catalysis, 2008, 256(2), 237-247.

https://doi.org/10.1016/j.jcat.2008.03.014

Qiao B., Zhang J., Liu L., Deng Y. Low prepared highly effective ferric hydroxide supported gold catalysts for carbon monoxide selective oxidation in the presence of hydrogen. Applied Catalysis, A: General, 2008, 340(2), 220-228.

https://doi.org/10.1016/j.apcata.2008.02.027

Imai H., Date M., Tsubota S. Preferencial oxidation of CO in H2-rich gas at low temperatures over Au nanoparticles supported on metal oxides. Catalysis Letters, 2008, 124(1), 68-73.

https://doi.org/10.1007/s10562-008-9501-x

Chernyi A.A., Mastchenko S.V., Honcharov V.V., Zazhigalov V.A. Nizkotemperaturnaya nanomodifikaciya poverkhnosti nerzhaveyustchei stali ionnymi puchkami. Khimiya, Fizyka ta Tekhnologiya Poverkhni, 2014, 5(2), 190-196. [in Russian].

Zazhigalov V.O., Honcharov V.V. The formation of nanoscale coating on the 12Cr18Ni10Ti steel during ion implantation. Metallofizika Noveishie Tekhnologii, 2014, 36(6), 757-766.

https://doi.org/10.15407/mfint.36.06.0757

Zazhigalov V.A., Honcharov V.V., Bacherikova I.V. Nizkotemperaturnaya implantaciya - perspektivnyi metod sinteza novykh katalizatorov i funkcional'nykh materialov. Fundamental'nye problemy sozdaniya novykh vestchestv i materialov khimicheskogo proizvodstva. - Kyiv: Akademperiodika, 2016, 279-288.

Honcharov V., Zazhigalov V., Sawlowicz Z., Socha R., Gurgul J. Structural, catalytic and thermal properties of stainless steel with nanoscale surface layer. Springer Proceeding in Physics, 2017, 195, 355-364.

https://doi.org/10.1007/978-3-319-56422-7_26

Cherny A.A., Maschenko S.V., Honcharov V.V., Zazhigalov V.A. Nanodimension layers on stainless stail surface synthesized by ionic implantation and their simulation. Springer Proceeding in Physics, 2015, 157, 203-213.

https://doi.org/10.1007/978-3-319-18543-9_12

Nikolaieva D.Yu., Honcharov V.V., Ivashin D.Yu., Zazhigalov V.O. Use of spectroscopy and computer simulation to the study of surfaces modified by ionic implantation. Ukrainian Journal of Physics, 2021, 66(6), 511-517.

https://doi.org/10.15407/ujpe66.6.511

Zazhigalov V.A., Honcharov V.V., Bacherikova I.V., Socha R., Gurgul J. Formation of nanodimensional layer of catalytically active metals on stainless steel surface by ionic implantation. Theoretical and Experimental Chemistry, 2018, 54(2), 128-137.

https://doi.org/10.1007/s11237-018-9556-8

Honcharov V., Skarha-Bandurov, Zazhigalov V., Vasilenko N. The use of ionic implantation for medical materials modifying. Biomedical Journal Science and Technology Researches, 2018, 11(3), 1-3.

https://doi.org/10.26717/BJSTR.2018.11.002118

Honcharov V., Zazhigalov V. The use of ionic implantation in the synthesis nano palladium for biosensors. International Journal of Biosensors and Bioelectronics, 2018, 4(3), 98-100.

https://doi.org/10.15406/ijbsbe.2018.04.00105

Kryvoruchko S.O., Kryvoruchko A.O., Honcharov V.V., Zazhigalov V.O. Properties of steel modified by surface ion implantation with Mo, Ti and Al. Ukrainian Journal of Physics, 2022, 67(4), 292-298.

https://doi.org/10.15407/ujpe67.4.292

Katruha A.V., Honcharov V.V., Zazhigalov V.O. Steel heaters with implanted titanium. International Journal of Energy Clean Environmental, 2016, 17(2-4), 133-144.

https://doi.org/10.1615/InterJEnerCleanEnv.2016019362

Kapinus E.I., Viktorova T.I., Khalyavka T.A. Dependence of the rate of photocatalytic decomposition of safranin on the catalyst concentration. Theoretical and Experimental Chemistry, 2009, 45(2), 114-117.

https://doi.org/10.1007/s11237-009-9071-z

Kapinus E.I., Viktorova T.I. Kinetics of the photocatalytic degradation of methylene blue on titanium dioxide. Theoretical and Experimental Chemistry, 2010, 46(3), 163-167.

https://doi.org/10.1007/s11237-010-9134-1

Kapinus E.I. Fluorescence properties of nanosized sulphides. Russian Journal of Physical Chemistry, A, 2011, 85(4), 668-671.

https://doi.org/10.1134/S003602441104011X

Kapinus E.I., Kamyshan S.V. Autoinhibition of photocatalytic reduction of safranin and dichromate ions at anatase. Theoretical and Experimental Chemistry, 2011, 47(5), 311-316.

https://doi.org/10.1007/s11237-011-9220-z

Kapinus E.I. Fundamental'nye koncepcii v khimii: monograph. - Saarbrucken, Germany: LAP LAMBERT acad. Publ., 2013. - 284 p.

Kapinus E.I. Energy, charge and electron transfer processes in chemistry: book. - Kyiv: Akademperiodika, 2016. - 134 p.

https://doi.org/10.15407/akademperiodyka.322.135

Kernazhitsky L., Shymanovska V., Gavrilko T., Naumov V., Kshnyakin V., Khalyavka T. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO2 doped with transition metal cations. Journal of Solid State Chemistry, 2013, 198, 511-519.

https://doi.org/10.1016/j.jssc.2012.11.015

Khalyavka T.A., Tsyba N.N., Kamyshan S.V., Kapinus E.I. Synthesis and study of physicochemical, sorption, and photocatalytic properties of barium titanate - modified titania powder. High Energy Chemistry, 2015, 49(4), 263-266.

https://doi.org/10.1134/S0018143915040098

Khalyavka T.A., Kamyshan S.V., Lysenko A.A., Trikhlev V.A. Photocatalytic degradation of safranin T and rodamine on nanoparticles of rutile modified with C3N4. Theoretical and Experimental Chemistry, 2016, 52(4), 227-232.

https://doi.org/10.1007/s11237-016-9472-8

Shapovalova M.V., Khalyavka T.A., Shcherban N.D., Khyzhun O.Y., Permyakov V.V., Shcherbakov S.N. The influence of sulfur dopants on optical, textural, structural and photocatalytic properties of titanium dioxide. Nanosistemi, Nanomateriali, Nanotehnologii, 2020, 18(3), 681-695.

https://doi.org/10.15407/nnn.18.03.681

Khalyavka T., Bondarenko M., Shcherban N., Petrik I., Melnik A. Effect of the C and S additives on structural, optical and photocatalytic properties of TiO2. Applied Nanoscience, 2019, 9(5), 695-702.

https://doi.org/10.1007/s13204-018-0838-1

Shapovalova M.V., Khalyavka T.A., Khyzhun O.Y., Shcherban N.D., Permyakov V.V., Scherbakov S.N.. The influence of titanum dioxide modification by sulfur and carbon on physico-chemical and photocatalytic properties. Chemistry, Physics and Technology of Surface, 2019, 10(4), 377-388.

Khalyavka T.A., Shymanovska V.V., Manuilov E.V., Shcherban N.D., Khyzhun O.Y., Korzhak G.V., Permyakov V.V. The influence of La doping on structural, optical and photocatalytic properties of TiO2 in dyes destruction and hydrogen evolution. Springer Proceeding in Physics, 2021, 246, 361-380.

https://doi.org/10.1007/978-3-030-51905-6_27

Khalyavka T.A., Shapovalova M.V., Korzhak G.V., Shcherban N.D., Khyzhun O.Y., Camyshan S.V., Permyakov V.V., Scherbakov S.N. Photocatalytic hydrogen evolution and Rifampicinum destruction in the presence of TiO2, modified with carbon by different methods. Research in Chemistry of Intermediates, 2022, 48(1), 13-28.

https://doi.org/10.1007/s11164-021-04609-1

Sydorchuk V.V., Khalameida S.V., Skubiszewska-Zięba J., Davidenko L.O., Zazhigalov V.O. Modyfikuvannya ta katalitychni vlastyvosti pentaoksydu niobiyu. Khimia, Fizyka ta Tekhnologiya Poverkhni, 2017, 8(2), 175-193. [in Ukrainian].

Khalameida S., Samsonenko M., Skubiszewska-Zięba J., Zakutevskyy O. Dyes catalytic degradation using modified tin (IV) oxide and hydroxide powders. Adsorption Science and Technology, 2017, 35, 853-865.

https://doi.org/10.1177/0263617417722251

Kucio K., Sydorchuk V., Khalameida S., Charmas B. Mechanochemical and microwave treatment of precipitated zirconium dioxide and study of its physical-chemical, thermal and photocatalytic properties. Journal of Thermal Analysis and Calorimetry, 2022, 147, 253-262.

https://doi.org/10.1007/s10973-020-10285-x

Kucio K., Sydorchuk V., Khalameida S., Charmas B. The effect of mechanochemical, microwave and hydrothermal modification of precipitated TiO2 on its physical-chemical and photocatalytic properties. Journal of Alloys and Compounds, 2021, 862, 158011.

https://doi.org/10.1016/j.jallcom.2020.158011

Khalameida S., Samsonenko M., Khyzhun O., Sydorchuk V., Starchevskyy V., Charmas B., Skwarek E. Sono - and mechanochemical doping of tin dioxide with silver and it sphysicochemical characteristics and photocatalytic properties. Research on Chemical Intermediates, 2023, 49, 121-125.

https://doi.org/10.1007/s11164-022-04865-9

Khalameida S., Samsonenko M., Sydorchuk V., Zakutevskyy O., Starchevskyy V., Lakhnik A.A. Improving the photocatalytic properties of tin dioxide doped with titanium and copper in the degradation of rhodamine B and safranin T. Reaction Kinetics and Mechanisms of Catalysis, 2022, 135, 1665-1685.

https://doi.org/10.1007/s11144-022-02206-w

Sydorchuk V.V., Zazhigalov V.A., Khalameida S.V., Wieczorek-Ciurowa K. Mechanochemical synthesis of BiTiO3 using different forms of TiO2. Inorganic Materials, 2010, 46(10), 1126-1130.

https://doi.org/10.1134/S0020168510100183

Khalameida S., Sydorchuk V., Skubiszewska-Zięba J., Leboda R., Zazhigalov V. Synthesis, thermoanalytical, and spectroscopical studies of dispersed barium titanate. Journal of Thermal Analysis and Calorimetry, 2010, 101(2), 779-784.

https://doi.org/10.1007/s10973-010-0755-3

Gorelov B.M., Kotenok E.V., Makhno S.V., Sidorchuk V.V., Khalameida S.V., Zazhigalov V.A. Structure and optical and dielectric properties of barium titanate nanoparticles obtained by the mechanochemical method. Technical Physics, 2011, 56(1), 83-91.

https://doi.org/10.1134/S1063784211010117

Khalameida S., Sydorchuk V., Zazhigalov V., Wieczorek-Ciurowa K., Skubiszewska-Zięba J., Charmas B. The interaction between barium and titanium oxides under mechanochemical, hydrothermal and microwave treatments and properties of prepared products. Advanced Science and Engineering Medical, 2017, 9(3), 235-246.

https://doi.org/10.1166/asem.2017.1979

Zazhygalov V., Khalameida S., Sydorchuk V., Wiechorek-Ciurowa K., Rakoczy J. Sposob wytwarzania nanoproszku tytanianu baru. Polish Patent N 225501. 2017. 05. 08 (ISPE NAN Ukrainy, Politechnika Krakowska PL).

Sydorchuk V.V., Khalameida S.V., Skubiszewska-Zieba J., Leboda R., Zaqzhigalov V.O., Davidenko L.O. Foto- ta mekhanokatalitychna degradaciya safraninu T v prysutnosti dyspersnogo niobatu litiyu. Khimia, Fizyka ta Tekhnologiya Poverkhni, 2012, 3(3), 265-272. [in Ukrainian].

Khalameida S., Sydorchuk V., Leboda R., Skubiszewska-Zięba J., Zazhigalov V. Preparation of nano-dispersed lithium niobate by mechanochemical route. Journal of Thermal Analysis Calorimetry, 2014, 115(1), 579-586.

https://doi.org/10.1007/s10973-013-3343-5

Sanzhak O.V., Brazhnyk D.V., Honcharov V.V., Zazhigalov V.A., Azimov F.A. The physical-chemical properties of Ti-containing stainless steel composites and its photoactivity. Chemistry, Physics and Technology of Surface, 2019, 10(4), 410-418.

https://doi.org/10.15407/hftp10.04.410

Sanzhak O.V., Brazhnyk D.V., Azimov F.A., Zazhigalov V.A. Fotodegradaciya benzolu u vodnomu rozchyni na dopovanomu nitrogenom ТіО2, nanesenomu na silikagel'. Kataliz I Naftokhimia, 2018, 27, 76-83. [in Ukrainian].

Sanzhak O.V., Goncharov V.V., Brazhnyk D.V, Azimov F.A., Zazhigalov V.O. Preparation of new photocatalytic materials using ion implantation method. Molecular Crystals and Liquid Crystals, 2019, 671(1), 156-163.

https://doi.org/10.1080/15421406.2018.1542098

Honcharov V.V., Zazhigalov V.O, Sanzhak O.V., Azimov F.A., Brazhnyk D.V., Parlinska-Wojtan M., Drzymala E. Nanoscale photocatalytic layers with titania on stainless steel foil. Springer Proceeding of Physics, 2019, 222, 121-129.

https://doi.org/10.1007/978-3-030-17755-3_8

Sanzhak O.V., Brazhnyk D.V., Honcharov V.V., Zazhigalov V.O. Ti-implanted nanoscale layers for the chloramphenicol photocatalytic decomposition. Springer Proceeding of Physics, 2021, 263, 103-116.

https://doi.org/10.1007/978-3-030-74741-1_7

Obzor rynka maleinovogo anhidrida v rosii i v mire. IKhTC Khimicheskie tekhnologii. 2019. http://ect-center.com/blog/maleic-anhydride_2

Kourtakis K., Gai P.L. Novel microstructures and reactivity for n-butane oxidation: advances and challenges in vapor phase alkane oxidation catalysis. Journal of Molecular Catalysis, A: Chemistry, 2004, 220, 93-102.

https://doi.org/10.1016/j.molcata.2004.03.053

Ballarini N., Cavani F., Cortelli C., Ligi S., Pierelli F., Trifiro F., Fumagali C., Mazzoni G., Monti F. VPO catalyst for n-butane oxidation to maleic anhydride: A goal achieved, or a still open challenge? Topics in Catalysis, 2006, 38(1-3), 147-156.

https://doi.org/10.1007/s11244-006-0080-z

Schulz C., Roy S.C., Wittich K., Naumann d'Alnoncourt R., Linke S., Strempel V.E., Frank B., Glaum R., Rosowski F. αII-(V1-xWx)OPO4 catalysts for the selective oxidation of n-butane to maleic anhydride. Catalysis Today, 2019, 333, 113-119.

https://doi.org/10.1016/j.cattod.2018.05.040

Védrine J.C. Revisiting active sites in heterogeneous catalysts: Their structure and their dynamic behavior. Applied Catalysis, A: General, 2014, 474, 40-50.

https://doi.org/10.1016/j.apcata.2013.05.029

Lesser D., Mestl G., Turek T. Transient behavior of vanadyl pyrophosphate catalysts during the partial oxidation of n-butane in industrial-sized, fixed bed reactors. Applied Catalysis, A: General, 2016, 510, 1-10.

https://doi.org/10.1016/j.apcata.2015.11.002

Faizan M., Zhang R., Liu R. Vanadium phosphorus oxide catalyst: Progress, development and application. Journal Industrial Engineering Chemistry, 2022, 110, 27-67.

https://doi.org/10.1016/j.jiec.2022.02.049

Ballarini N., Cavani F., Cortelli C., Gasparini F., Mignani A., Pierelli F., Trifiro F., Fumagali C., Mazzoni G. The contribution of homogeneous and non-oxidative side reactions in the performance of vanadyl pyrophosphate catalyst for the oxidation of n-butane to maleic anhydride under hydrocarbon-rich conditions. Catalysis Today, 2005, 99, 115-122.

https://doi.org/10.1016/j.cattod.2004.09.030

Kamiya Y., Nishikawa E., Okuhara T., Hattori T. Catalytic property of vanadyl pyrophosphates for selective oxidation of n-butane at high n-butane concentrations. Applied Catalysis, A: General, 2001, 206, 103-112.

https://doi.org/10.1016/S0926-860X(00)00592-5

Patience G.S., Bockrath R.E. Butane oxidation process development in a circulating fluidized bed. Applied Catalysis, A: General, 2010, 376(1-2), 4-12.

https://doi.org/10.1016/j.apcata.2009.10.023

Bertola A., Cassarino S. High productivity process to produce maleic anhydride from n-butane. US Pat 6040460, Pantochim S.A. - 21.03.2000.

Diyuk O.A., Zazhigalov V.O. Sposib oderzhannya nanesenogo vanadii-fosfornogo oksidnogo (VPO) katalizatora okisleniya n-butana v maleinovyi anhydride. Pat. 121051 Ukraina, Patent na kotysnu model'. Vlasnyk Instytut sorbcii to problem endoekologii NAN Ukrainy. Opubl. 27.11.2017, bul. N 22. [in Ukrainian].

Diyuk O.A., Zazhigalov V.O. Sposib oderzhannya oksidnogo vanadii-fosfornogo (VPO) katalizatora okisneniya n-butanu pidvystchenoi koncentracii v maleinovyi anhydride. Pat. 122421 Ukraina, Patent na kotysnu model'. Vlasnyk Instytut sorbcii to problem endoekologii NAN Ukrainy. Opubl. 10.01.2018, bul. N 01. [in Ukrainian].

Gleaves J.T., Ebner J.R., Kuechler T.C. Themporal analysis of products (TAP) - A unique catalyst evaluation system with submillisecond time resolution. Catalysis. Review: Science Engineering, 1988, 30(1), 49-116.

https://doi.org/10.1080/01614948808078616

Zazhigalov V.O., Grinenko S.B., Bacherikova I.V., Diuyk O.A. Nanodispersed VOX/SiO2 catalysts of partial oxidation of paraffin hydrocarbons. Theoretical and Experimental Chemistry, 2022, 58(4), 261-268.

https://doi.org/10.1007/s11237-022-09743-4

Ziolkowski J., Bordes E., Courtine P. Dynamic description of the oxidation of n-butane various faces of (VO)2P2O7 in terms of crystallochemical model of active sites. Journal of Molecular. Catalysis., 1993, 84(3), 307-326.

https://doi.org/10.1016/0304-5102(93)85063-Y

Zazhigalov V.A. The role of geometric factor in the selective oxidation of lower paraffins at VPO catalysts. Theoretical and Experimental Chemistry, 1999, 35(5), 247-257.

https://doi.org/10.1007/BF02511113

Ziolkowski J., Bordes E., Courtine P. Oxidation of butane and butene on (100) face of (VO)2P2O7: A dynamic view in terms of crystallochemical model of active sites. Journal of Catalysis, 1990, 122(1), 126-150.

https://doi.org/10.1016/0021-9517(90)90266-M

Centi G., Lopez Nieto J., Pinelli D., Trifiro F. Synthesis of phthalic and maleic anhydrides from n-pentane. 1.Kinetic analysis of the reaction network. Industrial Engineering and Chemical Researches, 1989, 28(4), 400-406.

https://doi.org/10.1021/ie00088a004

Centi G., Pinelli D., Trifiro F., Lopez Nieto J. Synthesis of phthalic and maleic anhydrides from n-pentane: reactivity of possible intermediates and co-feeding experiments. Studied Surface Science and Catalysis, 1990, 55, 635-642.

https://doi.org/10.1016/S0167-2991(08)60195-0

Zazhigalov V.A., Mikhailyuk V.D., Stoch J., Bacherikova I.V., Golovatyi V.G., Shabel'nikov V.P. Effect of chemical modification of VPO catalysts on their acid-base and catalytic properties in the oxidation of n-pentane. Theoretical and Experimental Chemistry, 1996, 32(3), 164-166.

https://doi.org/10.1007/BF01373244

Zazhigalov V.A., Haber J., Stoch J., Cheburakova E.V. The mechanism of n-pentane partial oxidation on VPO and VPBiO catalysts. Catalysis Communication, 2001, 2(11-12), 375-378.

https://doi.org/10.1016/S1566-7367(01)00063-2

Zazhigalov V.A., Cheburakova E.V., Bacherikova I.V., Stoch J., Haber J. The n-pentane partial oxidation and catalysts for its realization. DGMK Conference, 2004, 3, 265-272.

Zazhigalov V.A., Cheburakova E.V., Gansior M., Stoch J. Mechanism of phthalic anhydride formation in the oxidation of n-pentane on a vanadium-phosphorus oxide catalyst. Kinetics and Catalysis, 2006, 47(4), 803-811.

https://doi.org/10.1134/S0023158406060012

Cheburakova E.V., Zazhigalov V.A. Reaction mechanism-based design of efficient VPO catalysts for n-C5H12 oxidation into phthalic, maleic and citraconic anhydrides. Kinetics and Catalysis, 2008, 49(4), 577-586.

https://doi.org/10.1134/S0023158408040150

Haber J., Stoch J., Zazhigalov V.A., Bacherikova I.V., Cheburakova E.V. Selective oxidation of light alkanes on transition metal promoted vanadyl pyrophosphate (VPO) catalysts. Polish Journal of Chemistry, 2008, 82(10), 1839-1852.

Zazhigalov V.A., Kiziun E.V. Formation of phthalic anhydride by Diels-Alder reaction during n-pentane oxidation on VPO catalysts and control the process selectivity. Theoretical and Experimental Chemistry, 2017, 53(3), 194-198.

https://doi.org/10.1007/s11237-017-9515-9

Kiziun O.V., Zazhigalov V.O. Sposib oderzhannya vanadii-fosfornogo katalizatora (VPO) okisnennya n-pentanu u ftalevyi anhydride. Pat. 120930 Ukraina, Patent na kotysnu model'. Vlasnyk Instytut sorbcii to problem endoekologii NAN Ukrainy. Opubl. 27.11.2017, bul. N 22. [in Ukrainian].

Kiziun O.V., Zazhigalov V.O. Sposib oderzhannya ftalevogo anhydridu okisnennyam n-pentanu. Pat. 121108 Ukraina, Patent na kotysnu model'. Vlasnyk Instytut sorbcii to problem endoekologii NAN Ukrainy. Opubl. 27.11.2017, bul. N 22.

Gasior M., Gressel І., Zazhigalov V.A., Grzybowska B. Effect of additives to VPO system on its catalytic properties in oxidative dehydrogenation of propane and ethane. Polish Journal of Chemistry, 2003, 77(6), 909-915.

Ono T., Tanaka Y., Takeuchi T., Yamamoto K. Characterization of K-mixed V2O5 catalyst and oxidative dehydrogenation of propane on it. Journal of Molecular Catalysis, 2000, 159(2), 293-300.

https://doi.org/10.1016/S1381-1169(00)00218-1

Pena M.L., Dejoz A., Fornes V., Rey F., Vazquez M.I., Lopez Nieto J.M. V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. Applied Catalysis, A: General, 2001, 209(1-2), 155-164.

https://doi.org/10.1016/S0926-860X(00)00761-4

Solsona B., Zazhigalov V.A., Lopez Nieto J.M., Bacherikova I.V., Diyuk E.A. Oxidative dehydrogenation of ethane on promoted VPO catalysts. Applied Catalysis A: General, 2003, 249(1), 81-92.

https://doi.org/10.1016/S0926-860X(03)00178-9

Diyuk O.A., Zazhigalov V.A., Bacherikova I.V., Lopez Nieto J.M. Modyfikuvannya struktury I poverkhni VPO-vmisnogo katalizatora reakcii okyslyuval'nogo dehidruvannya etanu. Khimiya, fizyka ta tekhnologiya poverkhni. - Kyiv: Akademiya, 2004, 10, 114-117. [in Ukrainian].

Diyuk O.A., Zazhigalov V.O. Sposib oderzhannya oksidnogo vanadii-fosfornogo (VPO) katalizatora okyslyuval'nogo dehidruvannya etanu v etilen. Pat. 121744 Ukraina, Patent na kotysnu model'. Vlasnyk Instytut sorbcii to problem endoekologii NAN Ukrainy. Opubl. 11.12.2017, bul. N 23. [in Ukrainian].

Grinenko S.B., Zazhigalov V.A., Zaitsev Yu.P., Stoch J. Hydrothermal synthesis VSiO catalysts selective in partial hydrocarbon oxidation. 4th World Congress of Oxidation Catalysis. Berlin: Dechema e.V, 2001, 1, 73-76.

Berndt H., Martin A., Bruckner A., Schreier E., Muller D., Kosslick H., Wolf G.-U., Lucke B. Structure and catalytic properties of VOX/MCM materials for the partial oxidation of methane to formaldehyde. Journal of Catalysis, 2000, 191(2), 384-392.

https://doi.org/10.1006/jcat.1999.2786

Nikolov V., Klissurski D., Anastasov A. Phthalic anhydride from o-xylene catalysis: Science and engineering. Catalalysis Review - Science and Engineering, 1991, 33(3-4), 319-374.

https://doi.org/10.1080/01614949108020303

Grzybowska-Swierkosz B. Vanadia-titania catalysts for oxidationof o-xylene and other hydrocarbons. Applied Catalysis, A: General, 1997, 157(1-2), 263-310.

https://doi.org/10.1016/S0926-860X(97)00015-X

Zazhigalov V.A., Haber J., Stoch J., Kharlamov A.I, Marino A., Depero L., Bacherikova I.V. Mechanochemical preparation of V-Ti-O catalysts for o-xylene low temperature oxidation. Studied Surface Science and Catalysis, 2000, 130, 1805-1810.

https://doi.org/10.1016/S0167-2991(00)80463-2

Panov G.I., Uriarte A.K., Rodkin M.A., Sobolev V.I. Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites. Catalysis Today, 1998, 41(4), 365-385.

https://doi.org/10.1016/S0920-5861(98)00026-1

Zazhigalov V.A., Khalameida S.V., Zaitsev Yu.P., Bacherikova I.V. Direct benzene oxidation to phenol by molecular oxygen of modificated MoO3. 4th World Congress on Oxidation Catalysis. Berlin: Dechema e.V, 2001, 1, 291-297.

https://www.statista.com/statistics/1245235/acetaldehyde-market-volume-worldwide/

https://ihsmarkit.com/products/acetaldehyde-chemical-economics-handbook.html

Sachuk O.V., Zazhigalov V.O. Mekhanokhimichnyi sposib oderzhannya nanorozmirnykh sterzhniv β-ZnMoO4. Pat. 116067 Ukraina, Patent na kotysnu model'. Vlasnyk Instytut sorbcii to problem endoekologii NAN Ukrainy. Opubl. 10.05.2017, bul. N 09. [in Ukrainian].

Sachuk O.V., Zazhigalov V.O., Starchevskyy V.L. Sonokhimichnyi sposib oderzhannya nanorozmirnoi fazy α-ZnMoO4. Pat. 117264 Ukraina, Patent na kotysnu model'. Vlasnyk Instytut sorbcii to problem endoekologii NAN Ukrainy. Opubl. 26.06.2017, bul. N 12.

Zazhigalov V.A., Wieczorek-Ciurowa K., Sachuk O.V., Diyuk O.A., Bacherikova I.V. Mechanochemical synthesis of nanodispersed molybdenum oxide catalysts. Theoretical and Experimental Chemistry, 2018, 54(4), 225-234.

https://doi.org/10.1007/s11237-018-9567-5

Zazhigalov V.O., Sachuk O.V., Diyuk O.A., Kopachevska N.S., Starchevskyy V.L., Kurmach M.M. The effect of ultrasonic treatment on the physical-chemical properties of ZnO/MoO3 system. Springer Proceeding in Physics, 2018, 221, 153-166.

https://doi.org/10.1007/978-3-030-17759-1_11

Segawa A., Nakashima A., Nojima R., Yoshida N., Okamoto M. Acetaldehyde production from ethanol by eco-friendly non-chromium catalysts consisting of copper and calcium silicate. Industrial Engineering and Chemical Researches, 2018, 57(35), 11852-11867.

https://doi.org/10.1021/acs.iecr.8b02498

Gebers J.C., Kasim A.F.B.A., Fulham G.J., Kwong K.Y., Marek E.J. Production od acetaldehyde via oxidative dehydrogenation of ethanol in a chemical looping setup. ACS Engineering Au, 2023, 3(3), 184-194.

https://doi.org/10.1021/acsengineeringau.2c00052